Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Heat Transfer Research
Fator do impacto: 0.404 FI de cinco anos: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Imprimir: 1064-2285
ISSN On-line: 2162-6561

Volumes:
Volume 50, 2019 Volume 49, 2018 Volume 48, 2017 Volume 47, 2016 Volume 46, 2015 Volume 45, 2014 Volume 44, 2013 Volume 43, 2012 Volume 42, 2011 Volume 41, 2010 Volume 40, 2009 Volume 39, 2008 Volume 38, 2007 Volume 37, 2006 Volume 36, 2005 Volume 35, 2004 Volume 34, 2003 Volume 33, 2002 Volume 32, 2001 Volume 31, 2000 Volume 30, 1999 Volume 29, 1998 Volume 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2018016177
pages 1299-1321

EFFECTS OF HEAT FLUX ON NATURAL CONVECTION OF WATER-BASED NANOFLUIDS IN A TRAPEZOIDAL ENCLOSURE

Xiaofeng Wang
School of Mathematical Sciences, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China; School of Mathematics and Statistics, Minnan Normal University, Zhangzhou, Fujian 363000, PR China
Juntao Wang
School of Mathematical Sciences, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
Weizhong Dai
Mathematics and Statistics, College of Engineering and Science, Louisiana Tech University, Ruston, LA 71272, USA

RESUMO

This study investigates natural convection heat transfer of water-based nanofluids in a trapezoidal enclosure where the left vertical side is heated with constant heat flux both partially and throughout the entire wall, the inclined wall is cooled, and the rest walls are kept adiabatic. The dimensionless governing equations were solved using a higher-order compact finite difference method, and solutions for algebraic equations were obtained through pesudo-time algorithms. Investigations of four types of nanofluids were made at different values of Rayleigh number Ra in the range 102 ≤ Ra ≤ 105, for the heat flux Ht lying in the range 0.2 ≤ Ht ≤ 0.8, enclosure aspect ratio AR within 1.5 ≤ AR ≤ 3.0, center position of a heater Υp in 0.3 ≤ Υp ≤ 0.7, solid volume fraction parameter Φ of nanofluids in the range 0% ≤ Φ ≤ 20%, and at the fixed angle φ = 45°. The results show that the maximum value of the local Nusselt number NuΥ and average Nusselt number Nu can be achieved for the highest Rayleigh number Ra, the smallest center position of the heater Υp, and the smallest enclosure aspect ratio AR. In addition, it was observed that the enhancement in heat transfer in the trapezoidal enclosure is much improved with increase of the solid volume fraction parameter Φ of nanofluids at a low volume fraction (Φ ≤ 10%), but opposite effects appear when the solid volume fraction parameter Φ is high (Φ > 10%). Moreover, multiple correlations in terms of the Rayleigh number Ra and the solid volume fraction Φ of nanoparticles have been established.


Articles with similar content:

NUMERICAL STUDY OF THE EFFECT OF SIDE-WALL INCLINATION ANGLES ON NATURAL CONVECTION IN A 3D TRAPEZOIDAL ENCLOSURE FILLED WITH TWO-LAYER NANOFLUID AND AIR
Heat Transfer Research, Vol.49, 2018, issue 9
Emad Hasani Malekshah, Mahmoud Salari, Masoud Hasani Malekshah
NUMERICAL STUDY OF NATURAL CONVECTION HEAT TRANSFER OF NANOFLUIDS IN PARTIALLY HEATED SEMI-ANNULI
Computational Thermal Sciences: An International Journal, Vol.6, 2014, issue 3
Antonio Campo, Nader Ben-Cheikh, Brahim Ben-Beya, Sonia Bezi
NATURAL CONVECTION FLOWS IN A POROUS NANOFLUID-FILLED TRIANGULAR ENCLOSURE WITH WAVY LEFT WALL
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2015, issue
Saurabh Bhardwaj, Gautam Biswas, Amaresh Dalal
NUMERICAL STUDY ON NATURAL CONVECTION IN A POROUS CAVITY THAT IS PARTIALLY HEATED AND COOLED BY SINUSOIDAL TEMPERATURE AT VERTICAL WALLS
Journal of Porous Media, Vol.22, 2019, issue 1
Mohamed Si-Ameur, Liamena Hassinet
HEATLINE VISUALIZATION OF NATURAL CONVECTION IN AN INCLINED SQUARE POROUS ENCLOSURE WITH SINUSOIDAL BOUNDARY CONDITIONS
Journal of Porous Media, Vol.16, 2013, issue 10
Habibis Saleh, Ishak Hashim