Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Heat Transfer Research
Fator do impacto: 0.404 FI de cinco anos: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Imprimir: 1064-2285
ISSN On-line: 2162-6561

Volume 51, 2020 Volume 50, 2019 Volume 49, 2018 Volume 48, 2017 Volume 47, 2016 Volume 46, 2015 Volume 45, 2014 Volume 44, 2013 Volume 43, 2012 Volume 42, 2011 Volume 41, 2010 Volume 40, 2009 Volume 39, 2008 Volume 38, 2007 Volume 37, 2006 Volume 36, 2005 Volume 35, 2004 Volume 34, 2003 Volume 33, 2002 Volume 32, 2001 Volume 31, 2000 Volume 30, 1999 Volume 29, 1998 Volume 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2019025848
pages 1285-1305


Jieli Wei
College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, China
Jingyu Zhang
College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, China; Jiangsu Province Key Laboratory of Aerospace Power System, Nanjing, Jiangsu 210016, China
Xiaomin He
College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, China; Jiangsu Province Key Laboratory of Aerospace Power System, Nanjing, Jiangsu 210016, China
Yi Jin
College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, China; Jiangsu Province Key Laboratory of Aerospace Power System, Nanjing, Jiangsu 210016, China
Ji Li
College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, China
Mei Zheng
Nanjing Engineering Institute of Aircraft Systems, AVIC/Aviation Key Laboratory of Science Technology on Aero Electromechanical System Integration, Nanjing, Jiangsu 210016, China


In this paper, the effects of the impinging-film cooling effectiveness η for different inducting slabs are investigated experimentally and numerically. The cross section of an inducting slab (Rec or Tri), the layout of the cooling scheme (f-type and t-type) and an inducting channel (convergent, uniform, and divergent) were considered. The mainstream temperature was 403 K; and that of the coolant was ambient (298 K). The density flow ratio (DFR) ranging from 2.30 to 9.70 was considered. The cooling effectiveness η was obtained from experiment, while a numerical solution gave the detailed flow characteristics. The results show that the cooling effectiveness η increases with a raise in DFR. Triangular cross-sectional inducting slab (Tri) shows larger cooling effectiveness η as well as lower turbulence intensity than that of rectangular one (Rec) in an f-type layout. The comparison of the different cooling layouts shows that under the same conditions, the f-type layout presents better cooling performance than that of the t-type one. For inducting channel alteration, a uniform one gives better cooling performance in the initial section of the film with streamwise location x/d < 18, whereas a convergent one performs best after x/d = 18.


  1. Caliskan, S., Baskaya, S., and Calisir, T., Experimental and Numerical Investigation of Geometry Effects on Multiple Impinging Air Jets, Int. J. Heat Mass Transf., vol. 75, no. 6, pp. 685-703, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.04.005.

  2. Celik, I.B., Ghia, U., Roache, P.J., Freitas, C.J., Coloman, H., and Raad, P.E., Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications, J. Fluids Eng., vol. 130, no. 7, 078001, 2008, accessed June 22, 2008, from, 2008.

  3. Cruz, C.A., Experimental and Numerical Characterization of Turbulent Slot Film Cooling, PhD, University of Maryland, 2008.

  4. Dutta, R., Dewan, A., and Srinivasan, B., Comparison of Various Integration to Wall (ITW) RANS Models for Predicting Turbulent Slot Jet Impingement Heat Transfer, Int. J. Heat Mass Transf., vol. 65, no. 5, pp. 750-764, 2013. DOI: 10.1016/j. ijheatmasstransfer.2013.06.056.

  5. Fang, Z.M. and Fu, X.Q., Calculation of Thermodynamic Process with Gas Meter, Beijing: National Defense Industry Press, 1987.

  6. Fechter, S., Terzis, A., Ott, P., Weigand, B., von Wolfersdorf, J., and Cochet, M., Experimental and Numerical Investigation of Narrow Impingement Cooling Channels, Int. J. Heat Mass Transf., vol. 67, pp. 1208-1219, 2013. DOI: 10.1016/j.ijheat-masstransfer.2013.09.003.

  7. Horbach, T., Schulz, A., and Bauer, H.J., Trailing Edge Film Cooling of Gas Turbine Airfoils-Effects of Ejection Lip Geometry on Film Cooling Effectiveness and Heat Transfer, Heat Transf. Res., vol. 41, no. 8, pp. 849-865, 2010. DOI: 10.1615/ HeatTransRes.v41.i8.50.

  8. Immarigeon, A. and Hassan, I., An Advanced Impingement/Film Cooling Scheme for Gas Turbines-Numerical Study, Int. J. Numer. Meth. Heat Fluid Flow, vol. 16, no. 4, pp. 470-493, 2006. DOI: 10.1108/09615530610653091.

  9. Jubasz, A.J. and Marek, C.J., Combustor Liner Film Cooling in the Presence of High Free-Stream Turbulence, NASA, Washington, D.C., NASA-TN-D-6360, July, 1971.

  10. Khajehhasani, S. and Jubran, B.A., A Numerical Evaluation of the Performance of Film Cooling from a Circular Exit Shaped Hole with Sister Holes Influence, Heat Transf. Eng., vol. 37, no. 2, pp. 183-197, 2016. DOI: 10.1080/01457632.2015.1044415.

  11. Kline, S.J. and McClintock, F.A., Describing Uncertainties in Single-Sample Experiments, Mech. Eng., vol. 75, no. 1, pp. 3-8, 1953.

  12. Lebedev, V.P., Lemanow, V.V., and Terekhov, V.I., Heat Transfer in a Wall Jet at High Turbulence of Concurrent Stream, Int. J. Heat Mass Transf., vol. 42, no. 4, pp. 599-612, 1999. DOI: 10.1016/s0017-9310(98)00180-x.

  13. Lee, J., Ren, Z., Ligrani, P., Lee, D.H., Fox, M.D., and Moon, H.-K., Cross-Flow Effects on Impingement Array Heat Transfer with Varying Jet-to-Target Plate Distance and Hole Spacing, Int. J. Heat Mass Transf., vol. 75, pp. 534-544, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.03.040.

  14. Lefebvre A.H. and Ballal, D.R., Gas Turbine Combustion-Alternative Fuel and Emissions, 3rd Ed., New York: CRC Press, 2010.

  15. Lienhard IV, J.H. and Lienhard V, J.H., A Heat Transfer Textbook, 4th Ed., Cambridge: Phlogiston Press, 2012.

  16. Lotz, G.R.D., Thompson, B.E., and Konings, C.A., Numerical Uncertainties in Transonic Flow Calculations for Aerofoils with Blunt Trailing Edges, Int. J. Numer. Meth. Fluids, vol. 24, pp. 355-373, 1997. DOI: 10.1002/(sici)1097-0363(19970228)24:4<355::aid-fld498>;2-7.

  17. Moffat, R.J., Describing the Uncertainties in Experimental Results, Exp. Therm. Fluid Sci., vol. 1, no. 1, pp. 3-17, 1988. DOI: 10.1016/0894-1777(88)90043-X.

  18. Mongia, H.C., Engineering Aspects of Complex Gas Turbine Combustion Mixers. Part I: High AT, 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum & Aerospace Exposition, Orinado, Florida, 2011. DOI: 10.2514/6.2011-107.

  19. Ortega-Casanova, J. and Granados-Ortiz, F.J., Numerical Simulation of the Heat Transfer from a Heated Plate with Surface Variations to an Impinging Jet, Int. J. Heat Mass Transf., vol. 76, no. 6, pp. 128-143, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.04.022.

  20. Roache, P.J., Quantification of Uncertainty in Computational Fluid Dynamics, Annu. Rev. Fluid Mech., vol. 29, no. 29, pp. 123-160, 1997.

  21. Shanley, A.I., Cooling Systems: Energy, Engineering and Applications, Hauppauge, NY: Nova Science Publishers Inc., pp. 37-68, 2011.

  22. Simon, F.F., Jet Model for Slot Film Cooling with Effect of Free-Stream and Coolant Turbulence, NASA, Washington, D.C., NASA Technical Paper 2655, October 1986.

  23. Singh, D., Premachandran, B., and Kohli, S., Experimental and Numerical Investigation of Jet Impingement Cooling of a Circular Cylinder, Int. J. Heat Mass Transf., vol. 60, pp. 672-688, 2013.

  24. Tan, X.-M., Liu, B., Zhu, X.-D., and Zhang, J., Experimental Study of Cooling with a Mist/Air Impinging Jet, J. Eng. Thermo-phys, vol. 34, no. 12, pp. 2228-2331, 2013. DOI: 10.1002/2013GL058999.

  25. Tangemann, R. and Gretler, W., The Computation of a Two-Dimensional Turbulent Wall Jet in an External Stream, J. Fluids Eng., vol. 123, pp. 154-157, 2001. DOI: 10.1115/1.1331557.

  26. Taslim, M.E., Spring, S.D., and Mehlman, B.P., An Experimental Investigation of Film Cooling Effectiveness for Slots of Various Exit Geometries, J. Thermophys. Heat Transf., vol. 6, no. 2, pp. 302-307, 1992. DOI: 10.2514/6.1990-2266.

  27. Wan, C., Rao, Y., and Chen, P., Numerical Predictions of Jet Impingement Heat Transfer on Square Pin-Fin Roughened Plates, Appl. Therm. Eng., vol. 80, pp. 301-309, 2015. DOI: 10.1016/j.applthermaleng.2015.01.053.

  28. Yang, B., Chang, S., Wu, H., Zhao, Y., and Leng, M., Experimental and Numerical Investigation of Heat Transfer in an Array of Impingement Jets on a Concave Surface, Appl. Therm. Eng., vol. 127, 2017. DOI: 10.1016/j.applthermaleng.2017.07.190.

  29. Zuckerman, N. and Lior, N., Jet Impingement Heat Transfer: Physics, Correlations, and Numerical Modeling, Adv. Heat Transf., vol. 39, no. 6, pp. 565-631, 2006. DOI: 10.1016/S0065-2717(06)39006-5.

Articles with similar content:

Journal of Enhanced Heat Transfer, Vol.22, 2015, issue 2
Lei Wang, Bengt Sunden, Lei Luo, Songtao Wang, Chenglong Wang
Heat Transfer Research, Vol.48, 2017, issue 9
Olubunmi T. Popoola, Yiding Cao, Soheil Soleimani
Computational Thermal Sciences: An International Journal, Vol.2, 2010, issue 1
Viktor I. Terekhov, Vladimir V. Terekhov
Computational Thermal Sciences: An International Journal, Vol.8, 2016, issue 2
Zineb Hammami, Abbes Azzi, Fadela Nemdili, Zineddine Ahmed Dellil
International Heat Transfer Conference 16, Vol.9, 2018, issue
Sourabh Jha, Ari Glezer