Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Heat Transfer Research
Fator do impacto: 0.404 FI de cinco anos: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Imprimir: 1064-2285
ISSN On-line: 2162-6561

Volumes:
Volume 50, 2019 Volume 49, 2018 Volume 48, 2017 Volume 47, 2016 Volume 46, 2015 Volume 45, 2014 Volume 44, 2013 Volume 43, 2012 Volume 42, 2011 Volume 41, 2010 Volume 40, 2009 Volume 39, 2008 Volume 38, 2007 Volume 37, 2006 Volume 36, 2005 Volume 35, 2004 Volume 34, 2003 Volume 33, 2002 Volume 32, 2001 Volume 31, 2000 Volume 30, 1999 Volume 29, 1998 Volume 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2017016413
pages 1531-1544

FRACTIONAL BOUNDARY-LAYER FLOW AND HEAT TRANSFER OF A NANOFLUID OVER AN UNSTEADY MOVING PLATE

Zhi Cao
School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
Jinhu Zhao
School of Mathematics and Statistics, Fuyang Normal College, Fuyang 236037, Anhui, China
Liancun Zheng
School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China

RESUMO

This paper studies the fractional unsteady boundary layer and heat transfer of a two-dimensional nanofluid flow over a moving plate. Time-dependent fractional derivatives are considered in the constitutive relation for the nanofluid. Different nanoparticles and volume fractions are used in the viscoelastic-fluid-based fluid. Finite difference method is employed to solve the fractional boundary governing equations. The influences of involved parameters, namely fractional parameter, relaxation time, unsteadiness parameter, and the volume fraction of nanoparticles, on the velocity and temperature characteristics are discussed in detail. The results show that the relaxation time can adequately describe the long-term memory of flow and heat transfer, as well as the time-dependent fractional parameters. These parameters have a tendency to slow down the motion and the heat transfer of the nanofluid in the velocity and thermal boundary layer.


Articles with similar content:

Thermo-diffusion effects on MHD flow towards an exponentially Stretching Sheet in a nanofluid using FEM
Second Thermal and Fluids Engineering Conference, Vol.11, 2017, issue
Rama Bhargava, Rangoli Goyal, Mania Goyal
Hydromagnetic Flow and Heat Transfer of a Particulate Suspension Over a Non-Isothermal Surface with Variable Properties
International Journal of Fluid Mechanics Research, Vol.27, 2000, issue 2-4
Ali J. Chamkha
BOUNDARY LAYER FLOW OF VISCOELASTIC NANOFLUID OVER A WEDGE IN THE PRESENCE OF BUOYANCY FORCE EFFECTS
Computational Thermal Sciences: An International Journal, Vol.9, 2017, issue 3
Naikoti Kishan, Madhu Macha
HEAT AND MASS TRANSFER ANALYSIS OF UNSTEADY NON-NEWTONIAN FLUID FLOW BETWEEN POROUS SURFACES IN THE PRESENCE OF MAGNETIC NANOPARTICLES
Journal of Porous Media, Vol.20, 2017, issue 12
Muhammad Farooq Iqbal, M. Zubair Akbar Qureshi, Kashif Ali, M. Ashraf
Unsteady Free Convective Viscoelastic Boundary Layer Flow Past a Vertical Porous Plate with Internal Heat Generation/Absorption
International Journal of Fluid Mechanics Research, Vol.33, 2006, issue 6
Ioan Pop, Sujit Kumar Khan