Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Heat Transfer Research
Fator do impacto: 0.404 FI de cinco anos: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Imprimir: 1064-2285
ISSN On-line: 2162-6561

Volumes:
Volume 51, 2020 Volume 50, 2019 Volume 49, 2018 Volume 48, 2017 Volume 47, 2016 Volume 46, 2015 Volume 45, 2014 Volume 44, 2013 Volume 43, 2012 Volume 42, 2011 Volume 41, 2010 Volume 40, 2009 Volume 39, 2008 Volume 38, 2007 Volume 37, 2006 Volume 36, 2005 Volume 35, 2004 Volume 34, 2003 Volume 33, 2002 Volume 32, 2001 Volume 31, 2000 Volume 30, 1999 Volume 29, 1998 Volume 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2015007200
pages 839-859

NATURAL CONVECTION HEAT TRANSFER INSIDE AN INCLINED SOLAR COLLECTOR WITH A V-CORRUGATED ABSORBER

Meisam Habibi Matin
School of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, Tehran, Iran
Reza Hosseini
School of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, Tehran, Iran
H. Naderan
School of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, Tehran, Iran

RESUMO

The present article deals with the numerical study of two-dimensional steady-state laminar natural convection heat transfer inside an inclined solar collector with a V-corrugated absorber (hot wall) and a flat cover (cold wall). The Rayleigh number is considered to be lower than 5 × 104 to satisfy the assumption of laminar region for the heat transfer problem. The governing continuity, momentum, and energy equations are converted to a quadrant domain by means of conformal mapping. The finite volume technique has been used for discretization of the equations using a staggered grid, and finally the SIMPLE algorithm is utilized to solve them. The effects of parameters such as the inclination angle, aspect ratio, wave parameter, and of the Rayleigh number on the local Nusselt and the mean Nusselt number have been considered. Patterns of heat and fluid flows are also simulated. The results show that there are conditions in which the mean Nusselt number could be optimized.