Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Heat Transfer Research
Fator do impacto: 0.404 FI de cinco anos: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Imprimir: 1064-2285
ISSN On-line: 2162-6561

Volumes:
Volume 51, 2020 Volume 50, 2019 Volume 49, 2018 Volume 48, 2017 Volume 47, 2016 Volume 46, 2015 Volume 45, 2014 Volume 44, 2013 Volume 43, 2012 Volume 42, 2011 Volume 41, 2010 Volume 40, 2009 Volume 39, 2008 Volume 38, 2007 Volume 37, 2006 Volume 36, 2005 Volume 35, 2004 Volume 34, 2003 Volume 33, 2002 Volume 32, 2001 Volume 31, 2000 Volume 30, 1999 Volume 29, 1998 Volume 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2019030676
pages 57-82

GEOMETRIC-PARAMETER INFLUENCES ON AND ORTHOGONAL EVALUATION OF THERMOMECHANICAL PERFORMANCES OF A LAMINATED COOLING STRUCTURE

Chen Wang
College of Energy and Power Engineering, Jiangsu Province Key Laboratory of Aerospace Power System, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
Jing-Zhou Zhang
College of Energy and Power Engineering, Jiangsu Province Key Laboratory of Aerospace Power System, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China; Collaborative Innovation Center of Advanced Aero-Engine, Beij ing, 100191, China
Chun-hua Wang
College of Energy and Power Engineering, Jiangsu Province Key Laboratory of Aerospace Power System, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Jun Ji
College of Energy and Power Engineering, Jiangsu Province Key Laboratory of Aerospace Power System, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
Xiao-Ming Tan
College of Energy and Power Engineering, Jiangsu Province Key Laboratory of Aerospace Power System, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China

RESUMO

Numerical simulations are conducted to illustrate the geometric-parameter influences on and orthogonal evaluation of thermomechanical performances of a specific laminated cooling structure, under the representative engine-simulated environment. Five geometric parameters taken into consideration are the film-hole diameter, impinging-hole diameter, pin-fin diameter, streamwise hole-to-hole pitch, and the spanwise hole-to-hole pitch. Firstly, each geometric-parameter influence is investigated individually among its varying range while maintaining the other geometric parameters. Secondly, an orthogonal analysis (5-factors and 4-levels for each factor) is performed for evaluating the importance of each geometric-parameter on the thermomechanical performances of a laminated cooling structure, in the viewing of comprehensive performance index which is constructed by applying a weighted sum method, taking the overall cooling effectiveness, cooling air pressure drop, maximum thermal stress, and maximum thermal deformation into consideration. From the orthogonal analysis, a relatively optimum combination of the above geometric parameters is presented.

Referências

  1. Acharya, S. and Kanani, Y., Advances in Film Cooling Heat Transfer, Adv. Heat Transf., vol. 49, pp. 91-156, 2017.

  2. Andreini, A., Caciolli, G., Facchini, B., Tarchi, L., Coutandin, D., Peschiulli, A., and Taddei, S., Density Ratio Effects on the Cooling Performances of a Combustor Liner Cooled by a Combined Slot/Effusion System, ASME Paper GT2012-68263, 2012.

  3. ANSYS, Fluent 14.0 User's Guide, Canonsburg, PA: ANSYS Inc., 2012.

  4. ANSYS, Workbench Release 11.0, Canonsburg, PA: ANSYS Inc., 2008.

  5. Bunker, R.S., A Review of Turbine Shaped Film Cooling Technology, ASME J. Heat Transf., vol. 127, no. 4, pp. 441-453, 2005.

  6. Bunker, R.S., Film Cooling: Breaking the Limits of Diffused Shaped Holes, Heat Transf. Res., vol. 41, no. 6, pp. 627-650, 2009.

  7. Bunker, R.S., Gas Turbine Heat Transfer: Ten Remaining Hot Gas Path Challenges, ASME J. Turbomach., vol. 129, no. 2, pp. 193-210, 2007.

  8. Carlomagno, G.M. and Ianiro, A., Thermo-Fluid-Dynamics of Submerged Jets Impinging at Short Nozzle-to-Plate Distance: A Review, Exp. Therm. Fluid Sci., vol. 58, pp. 15-35, 2014.

  9. Cerri, G., Giovannelli, A., Battisti, L., and Fedrizzi, R., Advances in Effusive Cooling Techniques of Gas Turbines, Appl. Therm. Eng., vol. 27, no. 4, pp. 692-698, 2007.

  10. Chen, L.L., Brakmann, R.G.A., Weigand, B., Rodriguez, J., Grawford, M., and Poser, R., Experimental and Numerical Heat Transfer Investigation of an Impingement Jet Array with V-Ribs on the Target Plate and on the Impingement Plate, Int. J. Heat Fluid Flow, vol. 68, pp. 126-138, 2017.

  11. Chyu, M.K. and Siw, S.C., Recent Advances of Internal Cooling Techniques for Gas Turbine Airfoils, J. Therm. Sci. Eng. Appl., vol. 5, no. 2, p. 021008, 2013.

  12. Dubell, T.L., Letourneau, J.J., and Kaplan, R.M., Advanced Float wall Combustor Liner Technology Eliminates TF30-P-100 Transition Duct Fatigue Cracking, AIAA Paper 1985-1288, 1985.

  13. El-Jummah, A.M., Nazari, A., Andrews, G.E., and Staggs, J.E.J., Impingement/Effusion Cooling Wall Heat Transfer: Reduced Number of Impingement Jet Holes Relative to the Effusion Holes, ASME Paper GT2017-63494, 2017.

  14. Felix, J., Rajendran, R., Kumar, G.N., and Babu, Y.G., Experimental Study on Adiabatic Cooling Effectiveness on an Effusion Cooled Test Plate with Machined Ring Geometries, Heat Transf. Res., vol. 49, no. 9, pp. 865-880, 2018.

  15. Feng, X.X., Tian, S.Q., Bai, J.T., Zhang, H., Wang, K.F., and Wang, H., Numerical Investigation of an Integrated Impingement and Pin-Fin Cooling Configuration in a Wedge Duct, ASME Paper GT2014-26185, 2014.

  16. Funazaki, K. and Hachiya, K., Systematic Numerical Studies on Heat Transfer and Aerodynamic Characteristics of Impingement Cooling Devices Combined with Pins, ASME Paper GT2003-38256, 2003.

  17. Funazaki, K.I. and Salleh, H.B., Extensive Studies on Internal and External Heat Transfer Characteristics of Integrated Impingement Cooling Structures for HP Turbines, ASME Paper GT2008-50202, 2008.

  18. Han, J.C. and Huh, M., Recent Studies in Turbine Blade Internal Cooling, Heat Transfer Res., vol. 41, no. 8, pp. 803-828, 2010.

  19. Hong, S.K., Rhee, D.H., and Cho, H.H., Effects of Fin Shapes and Arrangements on Heat Transfer for Impingement/Effusion Cooling with Crossflow, ASME J. Heat Transf., vol. 129, no. 12, pp. 1697-1707, 2007.

  20. Hong, S.K., Rhee, D.H., and Cho, H.H., Heat/Mass Transfer with Circular Pin Fins in Impingement/Effusion Cooling with Crossflow, J. Thermophys. Heat Transf., vol. 20, no. 4, pp. 728-737, 2006.

  21. Kim, K.M., Moon, H., Park, J.S., and Cho, H.H., Optimal Design of Impinging Jets in an Impingement/Effusion Cooling System, Energy, vol. 66, pp. 839-848, 2014.

  22. Laraia, M., Manna, M., Cinque, G., and Di Martino, P., A Combustor Liner Cooling System Design Methodology Based on a Fluid/Structure Approach, Appl. Therm. Eng., vol. 60, pp. 105-121, 2013.

  23. Ligrani, P., Goodro, M., Fox, M., and Moon, H.K., Full-Coverage Film Cooling: Film Effectiveness and Heat Transfer Coefficients for Dense and Sparse Hole Arrays at Different Blowing Ratios, ASME J. Turbomach., vol. 134, no. 4, p. 061039, 2012.

  24. Ligrani, P., Goodro, M., Fox, M., and Moon, H.K., Full-Coverage Film Cooling: Heat Transfer Coefficients and Film Effectiveness for a Sparse Hole Arrays at Different Blowing Ratios and Contraction Ratios, ASME J. Heat Transf., vol. 137, no. 3, p. 032201, 2015.

  25. Ligrani, P., Ren, Z., Liberatore, F., Patel, R., Srinivason, R., and Ho, Y.H., Double Wall Cooling of a Full-Coverage Effusion Plate, Including Internal Impingement Array Cooling, J. Eng. Gas Turbines Power, vol. 140, no. 5, p. 051901, 2018.

  26. Liu, C.L., Xie, G., Wang, R., and Ye, L., Study on Analogy Principle of Overall Cooling Effectiveness for Composite Cooling Structures with Impingement and Effusion, Int. J. Heat Mass Transf., vol. 127, pp. 639-650, 2018.

  27. Luo, L., Wang, C.L., Wang, L., Sunden, B., and Wang, S.T., Effects of Pin Fin Configurations on Heat Transfer and Friction Factor in an Improved Lamilloy Cooling Structure, Heat Transf. Res., vol. 48, no. 7, pp. 657-679, 2017.

  28. Murray, A.V., Ireland, P.T., and Rawlinson, A.J., An Integrated Conjugate Computational Approach for Evaluating the Aero-thermal and Thermomechanical Performance of Double-Wall Effusion Cooled Systems, ASME Paper GT2017-64711, 2017.

  29. Nakamata, C., Mimura, F., Matsushita, M., Yamane, T., Fukuyama, Y., and Yoshida, T., Local Cooling Effectiveness Distribution of an Integrated Impingement and Pin Fin Cooling Configuration, ASME Paper GT2007-27020, 2007.

  30. Nealy, D.A. and Relder, S.B., Evaluation of Laminated Porous Wall Materials for Combustor Liner Cooling, J. Eng. Gas Turbines Power, vol. 102, no. 2, pp. 268-276, 1980.

  31. Petre, B., Dorignac, E., and Vullierme, J.J., Study of the Influence of the Number of Holes Rows on the Convective Heat Transfer in the Case of Full Coverage Film Cooling, Int. J. Heat Mass Transf., vol. 46, pp. 3477-3496, 2003.

  32. Qu, L.H., Zhang, J.Z., and Tan, X.M., Improvement on Film Cooling Effectiveness by a Combined Slot-Effusion Scheme, Appl. Therm. Eng., vol. 126, pp. 379-392, 2017.

  33. Rao, Y., Jet Impingement Heat Transfer in Narrow Channels with Different Pin Fins Configurations on Target Surfaces, ASME J. Heat Transf., vol. 140, no. 1, p. 072201. 2018.

  34. Rhee, D.H., Choi, J.H., and Cho, H.H., Local Heat/Mass Transfer with Various Rib Arrangements in Impingement/Effusion Cooling System with Crossflow, ASME J. Turbomach., vol. 126, no. 4, pp. 615-626, 2004.

  35. Tan, L., Zhang, J.Z., and Xu, H.S., Jet Impingement on a Rib-Roughened Wall Inside Semi-Confined Channel, Int. J. Therm. Sci., vol. 86, pp. 210-218, 2014.

  36. Tan, X.M., Zhang, J.Z., and Xu, H.S., Experimental Investigation on Impingement/Effusion Cooling with Short Normal Injection Holes, Int. Commun. Heat Mass Transf., vol. 69, pp. 1-10, 2015.

  37. Wang, B.X., Zhang, W.H., Xie, G.N., Xu, Y.J., and Xiao, M.Y., Multiconfiguration Shape Optimization of Internal Cooling System of a Turbine Guide Vane Based on Thermomechanical and Conjugate Heat Transfer Analysis, ASME J. Heat Transf., vol. 137, no. 6, p. 061004, 2015.

  38. Wang, J.H., Lv, X.J., Liu, Q.D., and Wu, X.Y., An Experimental Investigation on Cooling Performance of a Laminated Configuration Using Infrared Thermal Image Technique, ASME Paper GT2009-59838, 2009a.

  39. Wang, J.H., Xu, H.Z., Lv, X.J., Du, Z.N., and Yang, S.J., A Numerical Investigation on Fluid-Thermal-Structure Coupling Characteristics of Laminated Configurations, ASME Paper GT2009-59604, 2009b.

  40. Wang, Z., Liu, J.J., and Zhang, C., Multi-Field Coupling Analysis on the Film-Cooling of a Turbine Guide Vane, ASME Paper GT2013-94038, 2013.

  41. Weigand, B. and Spring, S., Multiple Jet Impingement-A Review, Heat Transf. Res., vol. 42, no. 2, pp. 101-142, 2011.

  42. Yang, C.F. and Zhang, J.Z., Influence of Multi-Hole Arrangement on Cooling Film Development, Chinese J. Aeronaut., vol. 25, no. 2, pp. 182-188, 2012.

  43. Yang, J.Q. and Wang, Y.R., Structural Optimization of Hollow Fan Blade Based on Orthogonal Experimental Design, J. Aerospace Power, vol. 26, no. 2, pp. 376-384, 2011.

  44. Zeng, C., Jiang, X.H., and Chai, X.H., TC4 Hollow Fan Blade Structural Optimization Based on Bird-Strike Analysis, Procedia Eng., vol. 99, pp. 1385-1394, 2015.

  45. Zhang, C., Xu, Q.H., Zhao, M.M., Lin, Y.Z., and Liu, G.E., Effect of Impingement/Effusion Hole-Area Ratio on Discharge Coefficients of Double Cooling Wall, ASME Paper GT2006-90612, 2006.

  46. Zhang, L. and Wang, C., Orthogonal Simulation of Effects of Different Transverse Declining Slot Structures on Film Cooling, J. Propul. Power, vol. 37, no. 5, pp. 922-929, 2016.

  47. Zhang, X.D., Liu, J.J., and An, B.T., The Influences of Element Layout and Coolant Ejection Angle on Overall Cooling Effectiveness of Laminated Cooling Configuration, Int. J. Heat Mass Transf., vol. 101, pp. 988-991, 2016.