Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Heat Transfer Research
Fator do impacto: 0.404 FI de cinco anos: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Imprimir: 1064-2285
ISSN On-line: 2162-6561

Volumes:
Volume 50, 2019 Volume 49, 2018 Volume 48, 2017 Volume 47, 2016 Volume 46, 2015 Volume 45, 2014 Volume 44, 2013 Volume 43, 2012 Volume 42, 2011 Volume 41, 2010 Volume 40, 2009 Volume 39, 2008 Volume 38, 2007 Volume 37, 2006 Volume 36, 2005 Volume 35, 2004 Volume 34, 2003 Volume 33, 2002 Volume 32, 2001 Volume 31, 2000 Volume 30, 1999 Volume 29, 1998 Volume 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2012005619
pages 561-588

NUMERICAL STUDY OF THREE-DIMENSIONAL CONJUGATE HEAT TRANSFER IN LIQUID MINI-SCALE HEAT SINK

Mohamed Khamis Mansour
Department of Mechanical Engineering, Faculty of Engineering, Alexandria University

RESUMO

This paper presents a numerical study of the effect of the substrate material and liquid cooling medium on the heat transfer characteristics for three-dimensional conjugate heat transfer problem of laminar flow through a circular minichannel. A uniform heat flux of 100 kW/m2 is applied at the bottom-side of the substrate while the topside surface is considered adiabatic. Three different materials of the substrate have been adopted: copper (ks = 398 W/m·K), silicon (ks = 189 W/m·K), and stainless steel (ks = 15.9 W/m·K). Two different coolant liquids have also been proposed − water and mercury. The thermal characteristics of the conjugate heat transfer problem are represented by the local Nusselt (Nu) number, local bottom-side surface temperature of the channel, local heat flux, and local temperature difference between the solid and fluid domains. The effect of inlet coolant velocity is investigated with two different inlet velocities of 0.1 m/s and 0.05 m/s. The study shows that the thermal characteristics of the minichannel using water as a coolant medium with the three different substrate materials are in contradiction with those of the minichannel using mercury. The contradiction is generated as a result of the competitive effects of axial fluid conduction, and axial wall conduction as well as the competitive effects of the radial and circumferential heat diffusion in the fluid domain. The theoretical model has been verified by comparing the predicated results with those obtained from the available analytical and experimental data with maximum deviation of 6.7%. The study is considered as the benchmark and helpful guidelines in the design of small-scale circular channels which are used for electronic cooling systems.


Articles with similar content:

Enhanced natural convection in a narrow channel between two vertical conducting plates with discrete strip heaters
International Heat Transfer Conference 12, Vol.12, 2002, issue
Arsalan Razani, Lawrence T. James, Mohamed S. El-Genk
Flow boiling of R134a-Propane mixtures -experiments and CML modeling-
International Heat Transfer Conference 12, Vol.55, 2002, issue
Stephan Kabelac, Ali Abdulrahman Rabah
OPTIMAL DESIGN OF LONGITUDINAL-FIN HEAT SINKS ACCOUNTING FOR SIMULTANEOUSLY DEVELOPING FLOWAND CONJUGATE EFFECTS
Second Thermal and Fluids Engineering Conference, Vol.9, 2017, issue
Marc Hodes, Georgios Karamanis
EFFECTS OF MICRO- AND MACRO-SCALE VISCOUS DISSIPATIONS WITH HEAT GENERATION AND LOCAL THERMAL NON-EQUILIBRIUM ON THERMAL DEVELOPING FORCED CONVECTION IN SATURATED POROUS MEDIA
Journal of Porous Media, Vol.18, 2015, issue 9
M. Y. Abdollahzadeh Jamalabadi
ENHANCEMENT OF FLOW-JET COMBINED BOILING HEAT TRANSFER OF FC-72 OVER MICRO-PIN-FINNED SURFACES
Journal of Enhanced Heat Transfer, Vol.19, 2012, issue 6
Yonghai Zhang, Dong Guo, Jinjia Wei