Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Journal of Porous Media
Fator do impacto: 1.49 FI de cinco anos: 1.159 SJR: 0.43 SNIP: 0.671 CiteScore™: 1.58

ISSN Imprimir: 1091-028X
ISSN On-line: 1934-0508

Volumes:
Volume 22, 2019 Volume 21, 2018 Volume 20, 2017 Volume 19, 2016 Volume 18, 2015 Volume 17, 2014 Volume 16, 2013 Volume 15, 2012 Volume 14, 2011 Volume 13, 2010 Volume 12, 2009 Volume 11, 2008 Volume 10, 2007 Volume 9, 2006 Volume 8, 2005 Volume 7, 2004 Volume 6, 2003 Volume 5, 2002 Volume 4, 2001 Volume 3, 2000 Volume 2, 1999 Volume 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v15.i6.20
pages 517-530

A POROUS MODEL FOR THE INTERPRETATION OF MERCURY POROSIMETRY TESTS

Eduardo Rojas
Faculty of Engineering, Universidad Autonoma de Queretaro, Centro Universitario, Cerro de las Campanas, 76160, Queretaro, Qro., Mexico
Maria de la Luz Perez-Rea
Faculty of Engineering, Universidad Autonoma de Queretaro, Centro Universitario, Cerro de las Campanas, 76160, Queretaro, Qro., Mexico
Gustavo Gallegos
Faculty of Engineering, Universidad Autonoma de Queretaro, Centro Universitario, Cerro de las Campanas, 76160, Queretaro, Qro., Mexico
Julio Leal
Faculty of Engineering, Universidad Autonoma de Queretaro, Centro Universitario, Cerro de las Campanas, 76160, Queretaro, Qro., Mexico

RESUMO

Recently, the pore size distribution obtained from mercury intrusion porosimetry tests has been used by different researchers to describe some properties of soils. For example, porosimetry results have been used to obtain the soil-water characteristic curve and the hydraulic conductivity for different soils. One of the main assumptions of the mercury intrusion porosimetry test is to consider that the pores of soil can be represented by a bundle of capillary tubes, each of a different diameter, which saturate or dry independently from the others. However, this assumption is unrealistic. This article presents a more realistic porous model based on three different types of pores that allow for the simulation of the hysteresis of the soil-water characteristic curve as for the collapse of pores during drying. This model is a computational type, which means that the different elements are accommodated in two- or three-dimensional regular networks and the filling or drying of pores is followed step by step. The model is used to simulate a mercury intrusion porosimetry test in a material where the pore size distribution has also been obtained from image analysis of scanning electron micrographs. This simulation shows that the current interpretation for mercury intrusion porosimetry test results in pore sizes much smaller than the real values.


Articles with similar content:

FRACTAL ANALYSIS OF PORE STRUCTURES IN LOW PERMEABILITY SANDSTONES USING MERCURY INTRUSION POROSIMETRY
Journal of Porous Media, Vol.21, 2018, issue 11
Congle Wang, Zhichao Liu, Fuyong Wang, Jian Gao, Xiqun Tan, Liang Jiao
INVESTIGATING ROCK-FACE BOUNDARY EFFECTS ON CAPILLARY PRESSURE AND RELATIVE PERMEABILITY MEASUREMENTS
Journal of Porous Media, Vol.14, 2011, issue 5
O. A. Al-Omair, M. M. Al-Dousari, S. M. Al-Mudhhi
ROCK TYPE DETERMINATION OF A CARBONATE RESERVOIR USING VARIOUS APPROACHES: A CASE STUDY
Special Topics & Reviews in Porous Media: An International Journal, Vol.2, 2011, issue 4
Paitoon Tontiwachwuthikul, Farshid Torabi, Ali Abedini
VISUALIZED EXPERIMENT OF BUBBLE BEHAVIORS IN A NARROW RECTANGULAR CHANNEL UNDER NATURAL CIRCULATION CONDITION
International Heat Transfer Conference 16, Vol.20, 2018, issue
Shengzhi Yu, Tingting Ren, Kuan Yang, Changqi Yan, Meiyue Yan, Yongyong Yang
IMMISCIBLE FLUID DISPLACEMENT IN POROUS MEDIA: EXPERIMENTS AND SIMULATIONS
Journal of Porous Media, Vol.14, 2011, issue 5
Abhijit P. Deshpande, C. P. Krishnamoorthy, S. Pushpavanam