Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Journal of Porous Media
Fator do impacto: 1.752 FI de cinco anos: 1.487 SJR: 0.43 SNIP: 0.762 CiteScore™: 2.3

ISSN Imprimir: 1091-028X
ISSN On-line: 1934-0508

Volumes:
Volume 24, 2021 Volume 23, 2020 Volume 22, 2019 Volume 21, 2018 Volume 20, 2017 Volume 19, 2016 Volume 18, 2015 Volume 17, 2014 Volume 16, 2013 Volume 15, 2012 Volume 14, 2011 Volume 13, 2010 Volume 12, 2009 Volume 11, 2008 Volume 10, 2007 Volume 9, 2006 Volume 8, 2005 Volume 7, 2004 Volume 6, 2003 Volume 5, 2002 Volume 4, 2001 Volume 3, 2000 Volume 2, 1999 Volume 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v12.i1.60
pages 79-88

Thermophoresis Particle Deposition: Natural Convection Interaction from Vertical Permeable Surfaces Embedded in a Porous Medium

R. A. Damseh
Mechanical Engineering Department, Al-Huson University College, Al-Balqa Applied University, P. O. Box 50, Al-Huson 19117 Irbid, Jordan
Hamzeh Mustafa Duwairi
Mechanical Engineering Department, Faculty of Engineering and Technology, School of Engineering, University of Jordan, 11942 Amman, Jordan

RESUMO

This work deals with thermophoresis particle deposition on natural convection heat and mass transfer by steady laminar boundary layer flow over an isothermal vertical flat plate embedded in a fluid-saturated porous medium. The governing partial differential equations are transformed into nonsimilar form by using a special transformation, and then the resulting partial differential equations are solved numerically by using an implicit finite difference method. Different results are obtained and displaced graphically to explain the effect of various physical parameters on the wall thermophoresis deposition velocity and concentration profiles. It is found that the effect of increasing the porosity or thermophoresis wall coefficient is to increase the thermophoresis wall velocities, while the effect of increasing the dimensionless temperature ratio is to decrease the thermophoresis wall velocities for both cases of fluid suction or injection. Comparison with previously published work in the limits shows excellent agreement.


Articles with similar content:

RADIATION EFFECTS ON MHD BOUNDARY LAYER FLOW AND HEAT TRANSFER ALONG A STRETCHING CYLINDER WITH VARIABLE THERMAL CONDUCTIVITY IN A POROUS MEDIUM
Journal of Porous Media, Vol.21, 2018, issue 8
Sumit Gupta, Kalpna Sharma
Double-Diffusive Convective Flow of a Micropolar Fluid Over a Vertical Plate Embedded in a Porous Medium with a Chemical Reaction
International Journal of Fluid Mechanics Research, Vol.31, 2004, issue 6
Ali F. Al-Mudhaf, Ali J. Chamkha, Jasem Al-Yatama
EFFECTS OF RADIATION AND CHEMICAL REACTION ON HEAT AND MASS TRANSFER BY NATURAL CONVECTION IN A MICROPOLAR FLUID-SATURATED POROUS MEDIUM WITH STREAMWISE TEMPERATURE AND SPECIES CONCENTRATION VARIATIONS
Heat Transfer Research, Vol.45, 2014, issue 8
S.M.M. EL-Kabeir, Ahmed M. Rashad, Ali J. Chamkha
EFFECTS OF JOULE HEATING ON MHD FREE CONVECTIVE FLOW ALONG A MOVING VERTICAL PLATE IN POROUS MEDIUM
Special Topics & Reviews in Porous Media: An International Journal, Vol.7, 2016, issue 2
Konda Jayarami Reddy, K. Ramakrishna, R. Chandrasekhar Reddy
Simultaneous Heat and Mass Transfer by Natural Convection from a Cone and a Wedge in Porous Media
Journal of Porous Media, Vol.3, 2000, issue 2
Osamah Al-Hawaj, Ali J. Chamkha, A.-R.A. Khaled