Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Journal of Porous Media
Fator do impacto: 1.752 FI de cinco anos: 1.487 SJR: 0.43 SNIP: 0.762 CiteScore™: 2.3

ISSN Imprimir: 1091-028X
ISSN On-line: 1934-0508

Volumes:
Volume 23, 2020 Volume 22, 2019 Volume 21, 2018 Volume 20, 2017 Volume 19, 2016 Volume 18, 2015 Volume 17, 2014 Volume 16, 2013 Volume 15, 2012 Volume 14, 2011 Volume 13, 2010 Volume 12, 2009 Volume 11, 2008 Volume 10, 2007 Volume 9, 2006 Volume 8, 2005 Volume 7, 2004 Volume 6, 2003 Volume 5, 2002 Volume 4, 2001 Volume 3, 2000 Volume 2, 1999 Volume 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v16.i10.70
pages 959-966

3-D SIMULATION OF ACID INJECTION INTO A CARBONATE POROUS MEDIA: NONLINEAR CHEMISTRY

Fereshteh Samadi
School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
Feridun Esmaeilzadeh
Department of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
Dariush Mowla
Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 71345

RESUMO

Formation damage reduces well production or injection capacity, and the removal of damage is one of the major goals of petroleum engineers. Matrix acidizing can significantly enhance the productivity of a well when near-wellbore formation damage is present. In this treatment, acidic solution is injected to the well at pressures below the rock failure pressure. Acid can dissolve minerals in the formation and consequently recover or increase the permeability in the near-wellbore region. In successful carbonate acidization, acid can create empty channels called wormholes. During production, wormholes become pathways for the reservoir fluid to reach the well and hence improve production. In this work, matrix acidization in the multilayer carbonate reservoirs has been simulated in 3-D radial flow. The model includes nonlinear chemistry at the solid−fluid interface, depending on the reservoir temperature. The effect of rock composition in each layer and reservoir temperature on the final skin factor and dissolution patterns has been investigated. Also, the effects of temperature and concentration on acid viscosity and density have been considered. A good agreement is found between the simulated and field data.


Articles with similar content:

QUANTIFYING THE ROLE OF PORE GEOMETRY AND MEDIUM HETEROGENEITY ON HEAVY OIL RECOVERY DURING SOLVENT/CO-SOLVENT FLOODING INWATER-WET SYSTEMS
Journal of Porous Media, Vol.14, 2011, issue 4
S. Vossoughi, Ali Akbar Dehghan, Mohammad Hossein Ghazanfari, Riyaz Kharrat
PRESSURE TRANSIENT RESPONSE OF PARTIALLY FRACTURED RESERVOIRS
Special Topics & Reviews in Porous Media: An International Journal, Vol.4, 2013, issue 1
Sakineh Shakerinezhad, Feridun Esmaeilzadeh, Fereshteh Samadi
INJECTION OF DISPERSED OIL-IN-WATER EMULSION TO IMPROVE VOLUMETRIC SWEEP EFFICIENCY DURING WATER FLOODING OF OIL RESERVOIRS
Journal of Porous Media, Vol.23, 2020, issue 11
Nasser Alahmed, Marcelo Souza de Castro, Ingebret Fjelde
AN ANALYTICAL MODEL ON PRODUCTION PERFORMANCE OF MULTIPLE WELLS PRODUCING AT CONSTANT BOTTOMHOLE PRESSURES
Special Topics & Reviews in Porous Media: An International Journal, Vol.10, 2019, issue 1
Jalal Farhan Owayed, Md. Motiur Rahman, Jiaxing Xu, Jing Lu
TRANSIENT PRODUCTION DECLINE BEHAVIOR ANALYSIS FOR A MULTI-FRACTURED HORIZONTAL WELL WITH DISCRETE FRACTURE NETWORKS IN SHALE GAS RESERVOIRS
Journal of Porous Media, Vol.22, 2019, issue 3
Mingqiang Wei, Yonggang Duan, Mingzhe Dong, Morteza Dejam, Quantang Fang