Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Journal of Porous Media
Fator do impacto: 1.752 FI de cinco anos: 1.487 SJR: 0.43 SNIP: 0.762 CiteScore™: 2.3

ISSN Imprimir: 1091-028X
ISSN On-line: 1934-0508

Volumes:
Volume 23, 2020 Volume 22, 2019 Volume 21, 2018 Volume 20, 2017 Volume 19, 2016 Volume 18, 2015 Volume 17, 2014 Volume 16, 2013 Volume 15, 2012 Volume 14, 2011 Volume 13, 2010 Volume 12, 2009 Volume 11, 2008 Volume 10, 2007 Volume 9, 2006 Volume 8, 2005 Volume 7, 2004 Volume 6, 2003 Volume 5, 2002 Volume 4, 2001 Volume 3, 2000 Volume 2, 1999 Volume 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v6.i2.20
12 pages

Transient Behavior of Water-Oil Interface in an Upward Flow in Porous Media

Yacine Ould-Amer
Laboratoire des Transports Polyphasiques et Milieux Poreux, Departement de Genie Mecanique, USTHB, B.P. 32, El Alia, Bab Ezzouar 16111, Algeria
Salah Chikh
USTHB, Faculty of Mechanical and Process Engineering, LTPMP, Alger 16111, Algeria

RESUMO

A numerical study is performed to analyze unsteady flow of two immiscible fluids, water and oil, in a vertical cell filled with a porous medium. Injection of water from the bottom face perturbs the water-oil interface, which ceases being horizontal. The fluid motion in the porous medium is described by the transient Darcy model and continuity equation. A fully implicit, strongly coupled mathematical model is adopted to handle rapid water-oil interface changes. Effects of dimensionless parameters such as gravity-viscosity number N, dimensionless flow rate, Darcy number, and porosity are investigated and thoroughly documented. Their effects on evolution of the water-oil interface, on water breakthrough time, and on oil recovery are presented and discussed. A significant development of water-oil interface occurs, as the gravity-viscosity parameter and the porosity of the reservoir rock decrease. Results show that the breakthrough time is shorter for very dense, viscous oils (low values of N) and in the case of low Darcy number. High permeability can be beneficial in practical situations if the flow rate is maintained constant, since it permits considerable delay of water breakthrough, mainly at high values of N. A new coning correlation is presented to predict water breakthrough time and oil recovery, based on the flow equations and regression analysis using the data from numerical simulations.


Articles with similar content:

RELATIVE PERMEABILITIES CHARACTERIZATION IN CHEMICAL FLOODING WITH THE CONSIDERATION OF VISCOSITY RATIO AND INTERFACIAL TENSION BY A PORE-SCALE NETWORK MODEL
Journal of Porous Media, Vol.18, 2015, issue 11
Qingjie Liu, Pingping Shen
VARIABLE-ORDER ANOMALOUS HEAT TRANSPORT MATHEMATICAL MODELS IN DISORDERED AND HETEROGENEOUS POROUS MEDIA
Second Thermal and Fluids Engineering Conference, Vol.32, 2017, issue
Sidqi A. Abu-Khamsin, M. Enamul Hossain, Obembe Abiola David
TWO-PHASE FLOW OF AN OIL-WATER SYSTEM IN POROUS MEDIA WITH COMPLEX GEOMETRY INCLUDING WATER FLOODING: MODELING AND SIMULATION
Journal of Porous Media, Vol.14, 2011, issue 7
Francisco Marcondes, Brauner Gongalves Coutinho, Severino Rodrigues de Farias Neto, Antonio Gilson Barbosa de Lima, Francisco Alves Batista
NUMERICAL SIMULATION OF FREE FALL AND CONTROLLED GRAVITY DRAINAGE PROCESSES IN POROUS MEDIA
Journal of Porous Media, Vol.15, 2012, issue 3
Sohrab Zendehboudi, Maurice B. Dusseault, Ioannis Chatzis, Ali Shafiei
Effect of Gas Phase Flow on the Flashing Phenomena during an Ascending Two-Phase (Liquid-Gas) Flow in a Porous Channel
Journal of Porous Media, Vol.10, 2007, issue 6
Salim Riad Taleb, Chakib Seladji, Yahia Khadraoui