Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Journal of Porous Media
Fator do impacto: 1.49 FI de cinco anos: 1.159 SJR: 0.43 SNIP: 0.671 CiteScore™: 1.58

ISSN Imprimir: 1091-028X
ISSN On-line: 1934-0508

Volumes:
Volume 22, 2019 Volume 21, 2018 Volume 20, 2017 Volume 19, 2016 Volume 18, 2015 Volume 17, 2014 Volume 16, 2013 Volume 15, 2012 Volume 14, 2011 Volume 13, 2010 Volume 12, 2009 Volume 11, 2008 Volume 10, 2007 Volume 9, 2006 Volume 8, 2005 Volume 7, 2004 Volume 6, 2003 Volume 5, 2002 Volume 4, 2001 Volume 3, 2000 Volume 2, 1999 Volume 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.2019029049
pages 363-385

EVALUATING MODEL REDUCTION METHODS FOR HEAT AND MASS TRANSFER IN POROUS MATERIALS: PROPER ORTHOGONAL DECOMPOSITION AND PROPER GENERALIZED DECOMPOSITION

Julien Berger
Thermal Systems Laboratory, Mechanical Engineering Graduate Program, Pontifical Catholic University of Paraná, Rua Imaculada ConceiÃgÃco, 1155, CEP: 80215-901, Curitiba - Paraná, Brazil
S. Guernouti
Cerema, Dter Ouest, Nantes, France
M. Woloszyn
Université Savoie Mont Blanc, CNRS, LOCIE, F-73000 Chambéry, France

RESUMO

This paper explores deeper the features of model reduction methods proper orthogonal decomposition (POD) and proper generalized decomposition (PGD) applied to heat and moisture transfer in porous materials. The first method is an a posteriori one and therefore requires a previous computation of the solution using the large original model to build the reduced basis. The second one is a priori and does not need any previous computation. The reduced order model is built straightforward. Both methods aim at approaching a high-dimensional model with a low-dimensional one. Their efficiencies, in terms of accuracy, complexity reduction, and CPU time gains, are first discussed on a one-dimensional case of nonlinear coupled heat and mass transfer. The reduced order models compute accurate solutions of the problem when compared to the large original model. They also offer interesting complexity reduction: around 97% for the POD and 88% for the PGD on the case study. In further sections, the robustness of the reduced order models are tested for different boundary conditions and materials. The POD method has lack of accuracy to compute the solution when these parameters differ from the ones used for the learning step. It is also shown that PGD resolution is particularly efficient to reduce the complexity of parametric problems.


Articles with similar content:

AN EFFICIENT ANALYTICAL SOLUTION STRATEGY FOR MULTIDIMENSIONAL HEAT CONDUCTION PROBLEMS
Heat Transfer Research, Vol.45, 2014, issue 3
Mohammad Asif
ASSESSMENT OF COLLOCATION AND GALERKIN APPROACHES TO LINEAR DIFFUSION EQUATIONS WITH RANDOM DATA
International Journal for Uncertainty Quantification, Vol.1, 2011, issue 1
Raymond S. Tuminaro, Eric T. Phipps, Christopher W. Miller, Howard C. Elman
SCALAR TRANSPORT IN HETEROGENEOUS MEDIA: A SIMPLIFIED GREEN ELEMENT APPROACH
Hybrid Methods in Engineering, Vol.2, 2000, issue 1
Okey Oseloka Onyejekwe
EXPONENTIAL EULER TIME INTEGRATOR FOR ISOTHERMAL INCOMPRESSIBLE TWO-PHASE FLOW IN HETEROGENEOUS POROUS MEDIA
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2012, issue
Antoine Tambue
DYNAMIC NEURAL NETWORK AS A MODEL OF VISCOELASTIC MEDIA
Composites: Mechanics, Computations, Applications: An International Journal, Vol.9, 2018, issue 4
Yu. A. Basistov, Alexander N. Danilin, Yuri G. Yanovsky, Yulia N. Karnet