Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Journal of Porous Media
Fator do impacto: 1.752 FI de cinco anos: 1.487 SJR: 0.43 SNIP: 0.762 CiteScore™: 2.3

ISSN Imprimir: 1091-028X
ISSN On-line: 1934-0508

Volumes:
Volume 23, 2020 Volume 22, 2019 Volume 21, 2018 Volume 20, 2017 Volume 19, 2016 Volume 18, 2015 Volume 17, 2014 Volume 16, 2013 Volume 15, 2012 Volume 14, 2011 Volume 13, 2010 Volume 12, 2009 Volume 11, 2008 Volume 10, 2007 Volume 9, 2006 Volume 8, 2005 Volume 7, 2004 Volume 6, 2003 Volume 5, 2002 Volume 4, 2001 Volume 3, 2000 Volume 2, 1999 Volume 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v17.i2.70
pages 169-176

NUMERICAL INVESTIGATIONS OF STABILITY OF STRATIFIED VISCOELASTIC WALTERS' (MODEL B') FLUID/PLASMA IN THE PRESENCE OF QUANTUM PHYSICS SATURATING A POROUS MEDIUM

Veena Sharma
Department of Mathematics & Statistics, Himachal Pradesh University Shimla-171 005, India
Radhe Shyam
Department of Mathematics & Statistics, Himachal Pradesh University Shimla-171 005, India
Sudrshna Sharma
Department of Mathematics & Statistics, Himachal Pradesh University Shimla-171 005, India

RESUMO

Quantum effects on the Rayleigh−Taylor instability in an inhomogeneous stratified incompressible, viscoelastic Walters' (model B') fluid/plasma through a porous medium are investigated. The linear growth rate is derived for the case where a plasma with exponential density, viscosity, viscoelasticity, and quantum parameter distribution is confined between two rigid planes at z = 0, z = h. The solution of the linearized equations of the system together with the boundary conditions leads to derive the dispersion relation (the relation between the normalized growth rate and square normalized behavior wave number) using the normal mode technique to explain the roles that the variables of the problem play. The behavior of growth rates with respect to the quantum effect and kinematic viscoelasticity are examined in the presence of porous medium, the medium permeability, and kinematic viscosity. The results show that the quantum effects bring about more stability for a certain wave number band on the growth rate of unstable configuration.


Articles with similar content:

ELECTROHYDRODYNAMIC INSTABILITIES OF ATOMIZATION AND RAYLEIGH REGIMES FOR A DIELECTRIC LIQUID JET EMANATED WITH PARABOLIC VELOCITY PROFILE INTO A STATIONARY DIELECTRIC GAS THROUGH POROUS MEDIUM
Special Topics & Reviews in Porous Media: An International Journal, Vol.9, 2018, issue 4
Mohamed El-Sayed
MAGNETO-ROTATIONAL CONVECTION FOR FERROMAGNETIC FLUIDS IN THE PRESENCE OF COMPRESSIBILITY AND HEAT SOURCE THROUGH A POROUS MEDIUM
Special Topics & Reviews in Porous Media: An International Journal, Vol.5, 2014, issue 4
Seema Sharma, V. Singh, Kapil Kumar
MHD Instability of Rotating Superposed Walters B′ Viscoelastic Fluids through a Porous Medium
Journal of Porous Media, Vol.9, 2006, issue 5
Pardeep Kumar, Roshan Lal, Gursharn Jit Singh
NONLINEAR SPATIAL INSTABILITY OF A SLENDER VISCOUS JET
Atomization and Sprays, Vol.27, 2017, issue 12
Han-Yu Ye, Tao Hu, Pi-Min Chen, Li-Jun Yang
ONSET OF BUOYANCY-DRIVEN CONVECTION IN A CYLINDRICAL POROUS LAYER SATURATED WITH LARGE VISCOSITY VARIATION LIQUID
Journal of Porous Media, Vol.19, 2016, issue 8
Min Chan Kim, Jong Dae Lee