Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Journal of Porous Media
Fator do impacto: 1.752 FI de cinco anos: 1.487 SJR: 0.43 SNIP: 0.762 CiteScore™: 2.3

ISSN Imprimir: 1091-028X
ISSN On-line: 1934-0508

Volumes:
Volume 23, 2020 Volume 22, 2019 Volume 21, 2018 Volume 20, 2017 Volume 19, 2016 Volume 18, 2015 Volume 17, 2014 Volume 16, 2013 Volume 15, 2012 Volume 14, 2011 Volume 13, 2010 Volume 12, 2009 Volume 11, 2008 Volume 10, 2007 Volume 9, 2006 Volume 8, 2005 Volume 7, 2004 Volume 6, 2003 Volume 5, 2002 Volume 4, 2001 Volume 3, 2000 Volume 2, 1999 Volume 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.2019023331
pages 1131-1139

LATTICE BOLTZMANN MODEL FOR UPSCALING OF FLOW IN HETEROGENEOUS POROUS MEDIA BASED ON DARCY'S LAW

G. Z. Liu
Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
F. L. Liu
Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
M. Li
State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, China
X. Jin
Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, China
W. F. Lv
Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, China
Q. Liu
Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, China
Moran Wang
Department of Engineering Mechanics and CNMM, Tsinghua University, Beijing 100084, China

RESUMO

The upscaling of flow in heterogeneous porous media from a fine scale, where the reservoir is described with geostatistical algorithms, to a coarse scale, where reservoir simulation is performed, is investigated in this study. Effective permeability of a two-dimensional heterogeneous permeability field is calculated by a lattice Boltzmann algorithm. Our algorithm and codes are validated by series and parallel modes. Results for a chessboard mesh show that our method solves the singularity problem naturally among grids with inhomogeneous permeability, with a higher numerical accuracy on coarse grids compared with commercial software. Therefore, this method has more promising applicability and prospects.

Referências

  1. Ahmed Elfeel, M. and Geiger, S., Static and Dynamic Assessment of DFN Permeability Upscaling, SPE Europec/EAGE Annual Conf, 2012.

  2. Begg, S. and King, P., Modelling the Effects of Shales on Reservoir Performance: Calculation of Effective Vertical Permeability, SPE Reservoir Simulation Symposium, 1985.

  3. Boe,O., Analysis of an Upscaling Method based on Conservation of Dissipation, Transp. Porous Media, vol. 17,no. 1,pp. 77-86, 1994.

  4. Cardwell Jr., W. and Parsons, R., Average Permeabilities of Heterogeneous Oil Sands, Transact. AIME, vol. 160, no. 1,pp. 34-42, 1945.

  5. Chen, S. and Doolen, G.D., Lattice Boltzmann Method for Fluid Flows, Annual Rev. Fluid Mech, vol. 30, no. 1, pp. 329-364, 1998.

  6. Chen, Y. and Durlofsky, L.J., Adaptive Local-Global Upscaling for General Flow Scenarios in Heterogeneous Formations, Transp. Porous Media, vol. 62, pp. 157-185, 2006.

  7. Christie, M.A., Upscaling for Reservoir Simulation, J. Petrol. Technol., vol. 48, no. 11, 1996.

  8. Dagan, G., Models of Groundwater Flow in Statistically Homogeneous Porous Formations, Water Resour. Res., vol. 15, no. 1, pp. 47-63, 1979.

  9. Di Federico, V., Pinelli, M., and Ugarelli, R., Estimates of Effective Permeability for Non-Newtonian Fluid Flow in Randomly Heterogeneous Porous Media, Stochastic Environ. Res. Risk Assess., vol. 24, pp. 1067-1076,2010.

  10. Durlofsky, L. and Chung, E., Effective Permeability of Heterogeneous Reservoir Regions, ECMOR II-2nd European Conf. on the Mathematics of Oil Recovery, 1990.

  11. Dykhne, A., Conductivity of a Two-Dimensional Two-Phase System, Sov. Phys. JETP, vol. 32, no. 1, pp. 63-65, 1971.

  12. El-Amin, M.F., Salama, A., and Abbas, I., Viscous Dissipation Effect on Natural Convection in a Fluid Saturated Porous Medium, J. Porous Media, vol. 13, no. 11, pp. 989-997, 2010.

  13. Farmer, C., Upscaling: A Review, Int. J. Numer. Methods Fluids, vol. 40, nos. 1-2, pp. 63-78, 2002.

  14. Gomez-Hernandez, J.J., Simulation of Block Permeabilities Conditioned upon Data Measured at a Different Scale, ModelCare90: Calibration and Reliability in Groundwater Modeling, IAHS, vol. 195, 1990.

  15. Grindheim, A., An Evaluation of Homogenization Techniques for Estimating Effective Absolute Block Permeability by Use of a Stochastic Reservoir Description Simulator, PhD, Norwegian Institute of Technology, 1990.

  16. Holden, L. and Lia, O., A Tensor Estimator for the Homogenization of Absolute Permeability, Transp. Porous Media, vol. 8, no. 1,pp. 37-46, 1992.

  17. Journel, A., Deutsch, C., and Desbarats, A., Power Averaging for Block Effective Permeability, SPE California Regional Meeting, 1986.

  18. Karim, M. and Krabbenhoft, K., New Renormalization Schemes for Conductivity Upscaling in Heterogeneous Media, Transp. Porous Media, vol. 85, no. 3, pp. 677-690,2010.

  19. Kasap, E. and Lake, L.W., Calculating the Effective Permeability Tensor of a Gridblock, SPE Formation Eval., vol. 5, no. 2, pp. 192-200, 1990.

  20. King, P., The Use of Renormalization for Calculating Effective Permeability, Transp. Porous Media, vol. 4, no. 1, pp. 37-58,1989.

  21. Liu, Z.-F. and Wang, X.-H., Finite Analytic Numerical Method for Two-Dimensional Fluid Flow in Heterogeneous Porous Media, J. Comput. Phys, vol. 235, pp. 286-301, 2013.

  22. Lugo-Mendez, H.D., Valdes-Parada, F. J., and Ochoa-Tapia, J.A., An Analytical Expression for the Dispersion Coefficient in Porous Media Using Chang's Unit Cell, J. Porous Media, vol. 16, no. 1, pp. 29-40, 2013.

  23. Matheron, G., Elements pour une Theorie des Milieux Poreux, Paris: Springer, 1967.

  24. Raoof, A. and Hassanizadeh, S.M., Upscaling Transport of Adsorbing Solutes in Porous Media, J. Porous Media, vol. 13, no. 5, pp. 395-408,2010.

  25. Renard, P. and De Marsily, G., Calculating Equivalent Permeability: A Review, Adv. Water Resour, vol. 20, no. 5, pp. 253-278, 1997.

  26. Sharifi, M. and Kelkar, M., Novel Permeability Upscaling Method Using Fast Marching Method, Fuel, vol. 117, pp. 568-578, 2014.

  27. Succi, S., The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond, Oxford, U.K.: Oxford University Press, 2001.

  28. Wang, M. and Chen, S., Electroosmosis in Homogeneously Charged Micro- and Nanoscale Random Porous Media, J. Colloid Interface Sci., vol. 314, no. 1, pp. 264-273,2007.

  29. Wang,M. and Pan, N., Predictions of Effective Physical Properties of Complex Multiphase Materials, Mater. Sci. Eng.: R: Reports, vol. 63, no. 1,pp. 1-30,2008.

  30. Wang, M., Meng, F.K., and Pan, N., Transport Properties of Functionally Graded Materials, J. Appl. Phys., vol. 102, no. 3, p. 033514,2007a.

  31. Wang, J.K., Wang, M., and Li, Z.X., A Lattice Boltzmann Algorithm for Fluid-Solid Conjugate Heat Transfer, Int. J. Therm. Sci., vol. 46, no. 3, pp. 228-234, 2007b.

  32. Wang, M., Wang, J., Pan, N., and Chen, S., Mesoscopic Predictions of the Effective Thermal Conductivity for Microscale Random Porous Media, Phys. Rev. E, vol. 75, no. 3, p. 036702,2007c.

  33. Wang, M.R., Pan, N., Wang, J.K., and Chen, S.Y., Mesoscopic Simulations of Phase Distribution Effects on the Effective Thermal Conductivity of Microgranular Porous Media, J. ColloidInterf. Sci., vol. 311, no. 2, pp. 562-570, 2007d.

  34. Wang, M.R. and Pan, N., Elastic Property of Multiphase Composites with Random Microstructures, J. Comput. Phys, vol. 228, no. 16, pp. 5978-5988,2009.

  35. Wang, Y., Finite Analytic Numerical Method for Three-Dimensional Single-Phase Flow in Heterogeneous Porous Media, PhD, University of Science and Technology of China, 2015.

  36. Warren, J. and Price, H., Flow in Heterogeneous Porous Media, Soc. Petrol. Eng. J, vol. 1, no. 3, pp. 153-169,1961.

  37. Wen, X.-H. and Gomez-Hernandez, J.J., Upscaling Hydraulic Conductivities in Heterogeneous Media: An Overview, J. Hydrology, vol. 183, no. 1,pp. ix-xxxii, 1996.

  38. White, C.D., Representation of Heterogeneity for Numerical Reservoir Simulation, PhD, Stanford University, Stanford, CA, 1987.

  39. Xie, C.Y., Raeini, A.Q., Wang, Y.H., Blunt, M.J., and Wang, M.R., An Improved Pore-Network Model Including Viscous Coupling Effects Using Direct Simulation by the Lattice Boltzmann Method, Adv. Water Resour., vol. 100, pp. 26-34, 2017.

  40. Zhang, L. and Wang, M., Effects of Dielectric Permittivity of Solid Structure on Electro-Osmotic Permeability in Porous Media, J. Porous Media, vol. 18, no. 10, pp. 1021-1029, 2015.

  41. Zhang, L. and Wang, M.R., Electro-Osmosis in Inhomogeneously Charged Microporous Media by Pore-Scale Modeling, J. Colloid Interf. Sci, vol. 486, pp. 219-231,2017.

  42. Zhang, P., Pickup, G., and Christie, M., A New Practical Method for Upscaling in Highly Heterogeneous Reservoir Models, SPE J., vol. 13, pp. 68-76,2008.

  43. Zou, Q. and He, X., On Pressure and Velocity Boundary Conditions for the Lattice Boltzmann BGK Model, Phys. Fluids, vol. 9, no. 6, pp. 1591-1598, 1997.


Articles with similar content:

SIMULATION OF MICROFLOWS USING THE LATTICE BOLTZMANN METHOD ON NONUNIFORM MESHES
Nanoscience and Technology: An International Journal, Vol.3, 2012, issue 1
Sina Niazi, Ahmad Reza Rahmati
FAST AND INEXPENSIVE 2D-MICROGRAPH BASED METHOD OF PERMEABILITY ESTIMATION THROUGH MICRO-MACRO COUPLING IN POROUS MEDIA
Journal of Porous Media, Vol.22, 2019, issue 7
Krishna Pillai, Bamdad Barari, Saman Beyhaghi
A VARIANT OF THE S-VERSION OF THE FINITE ELEMENT METHOD FOR CONCURRENT MULTISCALE COUPLING
International Journal for Multiscale Computational Engineering, Vol.16, 2018, issue 2
Hachmi Ben Dhia, Wei Sun, Jacob Fish
FLUID-STRUCTURE INTERACTIONS SIMULATION AND VISUALIZATION USING ISPH APPROACH
Journal of Flow Visualization and Image Processing, Vol.26, 2019, issue 3
Abdelraheem M. Aly, M. Hassaballah, A. Abdelnaim
TIME-SPACE DOMAIN HIGH-ORDER STAGGERED-GRID FINITE DIFFERENCE METHOD FOR POROUS MEDIA
Journal of Porous Media, Vol.17, 2014, issue 9
Jinghuai Gao, Yijie Zhang