Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Journal of Porous Media
Fator do impacto: 1.061 FI de cinco anos: 1.151 SJR: 0.504 SNIP: 0.671 CiteScore™: 1.58

ISSN Imprimir: 1091-028X
ISSN On-line: 1934-0508

Volumes:
Volume 22, 2019 Volume 21, 2018 Volume 20, 2017 Volume 19, 2016 Volume 18, 2015 Volume 17, 2014 Volume 16, 2013 Volume 15, 2012 Volume 14, 2011 Volume 13, 2010 Volume 12, 2009 Volume 11, 2008 Volume 10, 2007 Volume 9, 2006 Volume 8, 2005 Volume 7, 2004 Volume 6, 2003 Volume 5, 2002 Volume 4, 2001 Volume 3, 2000 Volume 2, 1999 Volume 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v13.i3.20
pages 209-219

THREE-DIMENSIONAL MODELING OF THE EVAPORATIONOFVOLATILE HYDROCARBONS FROM ANISOTROPIC POROUS MEDIA

A. G. Yiotis
Environmental Research Laboratory, National Center for Scientific Research "Demokritos", Aghia Paraskevi 15310, Athens
I. N. Tsimpanogiannis
Environmental Research Laboratory, National Center for Scientific Research "Demokritos", Aghia Paraskevi 15310, Athens
Athanasios K. Stubos
Environmental Research Laboratory, Institute of Nuclear Technology and Radiation Protection, NCSR Demokritos, 15310 Aghia Paraskevi

RESUMO

Lean gas injection has been considered as a process to improve the recovery of residual volatile hydrocarbons from fractured petroleum reservoirs. The characterization and modeling of flow and mass transfer in fractured reservoirs are challenging tasks due to the complexity of the pore space, the anisotropy in the permeability of the rock, as well as the complex interplay between capillary, viscous, and buoyancy forces. In this contribution we develop a three-dimensional pore-network model that accounts for evaporation and diffusion of volatile liquids trapped in anisotropic pore networks. We investigate the effect of permeability gradients on the saturation profiles, the recovery rates, the evaporation patterns, and the stability of the receding evaporation fronts. It is shown that permeability gradients affect the stability of the evaporation front. When the permeability decreases in the direction of the receding evaporation front, then the front is stable and recedes in a piston-like manner, where a two-phase region of finite size develops early in the drying process. The size of this region depends on a permeability-based bond number defined in this paper. In the opposite case, where the permeability increases in the direction of the receding evaporation front, the liquid-gas interface becomes unstable and produces finger-like patterns. The thickness of these fingers is a function of the permeability-based bond number.


Articles with similar content:

USE OF FRACTURE AS A PLANAR SOURCE OF FLOW TO DETERMINE THE EFFECT OF A STAGNANT ZONE ON THE DILUTION OF A FRONT
Journal of Porous Media, Vol.14, 2011, issue 12
Somenath Ganguly
CAPILLARY FORCES BETWEEN TWO PARALLEL PLATES CONNECTED BY A LIQUID BRIDGE
Journal of Porous Media, Vol.18, 2015, issue 3
Morteza Dejam, Zhangxing Chen, Hassan Hassanzadeh
MATHEMATICAL MODELLING OF THE APPLICATION OF PSYCHROMETRIC METHODS FOR SURFACE PHENOMENA OF POROUS BODIES AT SIMULTANEOUS HEAT AND MASS TRANSFER
International Heat Transfer Conference 5, Vol.7, 1974, issue
S. Endrenyi
EVAPORATION OF BINARY MIXTURES: POOLS AND DROPLETS
International Heat Transfer Conference 16, Vol.4, 2018, issue
Pedro J. Saenz, Khellil Sefiane, George Karapetsas, Prashant Valluri, Adam G. L. Williams, Omar K. Matar
The Importance of Capillary Forces in Waterflooding: An Examination of the Buckley-Leverett Frontal Displacement Theory
Journal of Porous Media, Vol.5, 2002, issue 1
Mingzhe Dong, F. A. L. Dullien