Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Critical Reviews™ in Biomedical Engineering
SJR: 0.207 SNIP: 0.376 CiteScore™: 0.79

ISSN Imprimir: 0278-940X
ISSN On-line: 1943-619X

Volumes:
Volume 47, 2019 Volume 46, 2018 Volume 45, 2017 Volume 44, 2016 Volume 43, 2015 Volume 42, 2014 Volume 41, 2013 Volume 40, 2012 Volume 39, 2011 Volume 38, 2010 Volume 37, 2009 Volume 36, 2008 Volume 35, 2007 Volume 34, 2006 Volume 33, 2005 Volume 32, 2004 Volume 31, 2003 Volume 30, 2002 Volume 29, 2001 Volume 28, 2000 Volume 27, 1999 Volume 26, 1998 Volume 25, 1997 Volume 24, 1996 Volume 23, 1995

Critical Reviews™ in Biomedical Engineering

DOI: 10.1615/CritRevBiomedEng.2018027166
pages 341-367

Understanding the Role of Innate Immunity in the Response to Intracortical Microelectrodes

John K. Hermann
Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr. Drive, Wickenden Bldg, Cleveland, OH 44106; Advanced Platform Technology Center, Rehabilitation Research and Development, Louis Stokes Cleveland VA Medical Center, 10701 East Blvd. Mail Stop 151 AW/APT, Cleveland, OH 44106-1702
Jeffrey R. Capadona
Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr. Drive, Wickenden Bldg, Cleveland, OH 44106; Advanced Platform Technology Center, Rehabilitation Research and Development, Louis Stokes Cleveland VA Medical Center, 10701 East Blvd. Mail Stop 151 AW/APT, Cleveland, OH 44106-1702

RESUMO

Intracortical microelectrodes exhibit enormous potential for researching the nervous system, steering assistive devices and functional electrode stimulation systems for severely paralyzed individuals, and augmenting the brain with computing power. Unfortunately, intracortical microelectrodes often fail to consistently record signals over clinically useful periods. Biological mechanisms, such as the foreign body response to intracortical microelectrodes and self-perpetuating neuroinflammatory cascades, contribute to the inconsistencies and decline in recording performance. Unfortunately, few studies have directly correlated microelectrode performance with the neuroinflammatory response to the implanted devices. However, of those select studies that have, the role of the innate immune system remains among the most likely links capable of corroborating the results of different studies, across laboratories. Therefore, the overall goal of this review is to highlight the role of innate immunity signaling in the foreign body response to intracortical microelectrodes and hypothesize as to appropriate strategies that may become the most relevant in enabling brain-dwelling electrodes of any geometry, or location, for a range of clinical applications.


Articles with similar content:

T-Cell Immunity to Influenza A Viruses
Critical Reviews™ in Immunology, Vol.34, 2014, issue 1
Weisan Chen, Li Chen, Katherine Kedzierska, Ken Pang, Sergio Quinones-Parra, Emma J. Grant
Toll-Like Receptor Family in Domestic Animal Species
Critical Reviews™ in Immunology, Vol.28, 2008, issue 6
Federica Riva, Lauretta Turin
Botulinum Neurotoxin: The Neuromuscular Junction Revisited
Critical Reviews™ in Neurobiology, Vol.15, 2003, issue 3&4
Julie A. Coffield
T Lymphocytes and Their Cytokines in Human Immunodeficiency Virus (HIV) Infection: Implications for Associated Neoplasias
Critical Reviews™ in Oncogenesis, Vol.6, 1995, issue 3-6
Christian Jassoy, Bruce D. Walker
Therapeutic Dendritic Cell−Based Cancer Vaccines: The State of the Art
Critical Reviews™ in Immunology, Vol.33, 2013, issue 6
Marius M. Strioga, Valerijus Ostapenko, Daniel J. Powell Jr., Neringa T. Dobrovolskiene, Virgil E. J. C. Schijns, Thomas Felzmann, Jaroslav Michalek, Miroslava Matuskova