Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Critical Reviews™ in Biomedical Engineering
SJR: 0.243 SNIP: 0.376 CiteScore™: 0.79

ISSN Imprimir: 0278-940X
ISSN On-line: 1943-619X

Volumes:
Volume 46, 2018 Volume 45, 2017 Volume 44, 2016 Volume 43, 2015 Volume 42, 2014 Volume 41, 2013 Volume 40, 2012 Volume 39, 2011 Volume 38, 2010 Volume 37, 2009 Volume 36, 2008 Volume 35, 2007 Volume 34, 2006 Volume 33, 2005 Volume 32, 2004 Volume 31, 2003 Volume 30, 2002 Volume 29, 2001 Volume 28, 2000 Volume 27, 1999 Volume 26, 1998 Volume 25, 1997 Volume 24, 1996 Volume 23, 1995

Critical Reviews™ in Biomedical Engineering

DOI: 10.1615/CritRevBiomedEng.2017019757
pages 383-395

Air Pollution's Effects on the Human Respiratory System

Nehaarika Kantipudi
Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8N 3Z5 Canada
Vivek Patel
Departments of Medicine, McMaster University, Hamilton, ON, L8S 4K1, Ontario, Canada
Graham Jones
Departments of Biology & Medicine, McMaster University, Hamilton, ON, L8S 4K1, Ontario, Canada
Markad V. Kamath
Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8N 3Z5 Canada
Adrian R. M. Upton
Department of Medicine, McMaster University, Hamilton, Ontario, L8N3Z5, Canada

RESUMO

The World Health Organization defines air pollution as "any chemical, physical or biological agent that modifies the natural characteristics of the atmosphere." The most common pollutants include particulate matter, carbon monoxide, ozone, nitrogen oxide, and sulfur dioxide. The two types of air pollution, indoor and ambient, both contribute to a host of cardiac and respiratory illnesses. Exposure to excess levels of air pollution is significantly associated with a variety of acute and chronic respiratory illnesses, such as chronic obstructive pulmonary disease, asthma, respiratory allergies, and lung cancer. The effects of air pollution disproportionately impact the extremes of the age distribution, perhaps due to altered immune responses. Athletes and those who exercise outdoors are at greater risk for the respiratory effects of air pollution. This article discusses the epidemiology, types of respiratory diseases, and mechanisms involved in exposure to excess levels of air pollution. Biomedical engineering can contribute to the identification of air pollutants through the design of novel instrumentation using materials based on nanotechnology. Mathematical models can also be developed to characterize the physiological effects of air pollution.