Inscrição na biblioteca: Guest
Critical Reviews™ in Biomedical Engineering

Publicou 6 edições por ano

ISSN Imprimir: 0278-940X

ISSN On-line: 1943-619X

SJR: 0.262 SNIP: 0.372 CiteScore™:: 2.2 H-Index: 56

Indexed in

Approaches for Modeling Magnetic Nanoparticle Dynamics

Volume 42, Edição 1, 2014, pp. 85-93
DOI: 10.1615/CritRevBiomedEng.2014010845
Get accessGet access

RESUMO

Magnetic nanoparticles are useful biological probes as well as therapeutic agents. Several approaches have been used to model nanoparticle magnetization dynamics for both Brownian as well as Neel rotation. Magnetizations are often of interest and can be compared with experimental results. Here we summarize these approaches, including the Stoner-Wohlfarth approach and stochastic approaches including thermal fluctuations. Non-equilibrium-related temperature effects can be described by a distribution function approach (Fokker-Planck equation) or a stochastic differential equation (Langevin equation). Approximate models in several regimes can be derived from these general approaches to simplify implementation.

CITADO POR
  1. Reeves Daniel B., Weaver John B., Comparisons of characteristic timescales and approximate models for Brownian magnetic nanoparticle rotations, Journal of Applied Physics, 117, 23, 2015. Crossref

  2. Egolf Peter W., Shamsudhin Naveen, Pané Salvador, Vuarnoz Didier, Pokki Juho, Pawlowski Anne-Gabrielle, Tsague Paulin, de Marco Bastien, Bovy William, Tucev Sinisa, Ansari M. H. D., Nelson Bradley J., Hyperthermia with rotating magnetic nanowires inducing heat into tumor by fluid friction, Journal of Applied Physics, 120, 6, 2016. Crossref

  3. Fanti Alessandro, Lodi Matteo Bruno, Mazzarella Giuseppe, Enhancement of Cell Migration Rate Toward a Superparamagnetic Scaffold Using LF Magnetic Fields, IEEE Transactions on Magnetics, 52, 10, 2016. Crossref

  4. Kim Chang-Beom, Lim Eul-Gyoon, Shin Sung Woong, Krause Hans Joachim, Hong Hyobong, Magnetic immunoassay platform based on the planar frequency mixing magnetic technique, Biosensors and Bioelectronics, 83, 2016. Crossref

  5. Reeves Daniel B., Nonlinear Nonequilibrium Simulations of Magnetic Nanoparticles, in Magnetic Characterization Techniques for Nanomaterials, 2017. Crossref

  6. Lodi Matteo Bruno, Fanti Alessandro, Casu Sergio, Analysis of superparamagnetic scaffolds: For bone tissue engineering in static magnetic and dynamic fields, 2016 Loughborough Antennas & Propagation Conference (LAPC), 2016. Crossref

  7. Golovin Yuri I., Gribanovsky Sergey L., Golovin Dmitry Y., Zhigachev Alexander O., Klyachko Natalia L., Majouga Alexander G., Sokolsky Marina, Kabanov Alexander V., The dynamics of magnetic nanoparticles exposed to non-heating alternating magnetic field in biochemical applications: theoretical study, Journal of Nanoparticle Research, 19, 2, 2017. Crossref

  8. Shi Yipeng, Khurshid Hafsa, Ness Dylan B, Weaver John B, Harmonic phase angles used for nanoparticle sensing, Physics in Medicine & Biology, 62, 20, 2017. Crossref

  9. Kluth Tobias, Mathematical models for magnetic particle imaging, Inverse Problems, 34, 8, 2018. Crossref

  10. Kim Chang-Beom, Park Sang-Jin, Jeong Jae-Chan, Choi Seung-Min, Krause Hans-Joachim, Song Dae-Yong, Hong Hyobong, Construction of 3D-rendering imaging of an ischemic rat brain model using the planar FMMD technique, Scientific Reports, 9, 1, 2019. Crossref

  11. Bell A. Martin, Robinson Jacob T., Cozzoli P. Davide, The rotating magnetocaloric effect as a potential mechanism for natural magnetic senses, PLOS ONE, 14, 10, 2019. Crossref

  12. Iqbal M. Zubair, Dar Gohar Ijaz, Ali Israt, Wu Aiguo, Magnetic Nanomedicine, in Nanomedicine in Brain Diseases, 2019. Crossref

  13. Dednam W., Sabater C., Tal O., Palacios J. J., Botha A. E., Caturla M. J., Refined electron-spin transport model for single-element ferromagnetic systems: Application to nickel nanocontacts, Physical Review B, 102, 24, 2020. Crossref

  14. Tsai Ming Chih, Gassen River, Spendier Kathrin, Use of Magnetic Nanoparticles as In Situ Mucus Property Probe, Biophysica, 1, 2, 2021. Crossref

  15. Jiménez Gloria L., Thevi Guntnur Rohini, Guiliani Jason, Romero Gabriela, Enhancing magnetic hyperthermia in ferrite nanoparticles through shape anisotropy and surface hybridization, AIChE Journal, 67, 12, 2021. Crossref

  16. Kluth T, Szwargulski P, Knopp T, Towards accurate modeling of the multidimensional magnetic particle imaging physics, New Journal of Physics, 21, 10, 2019. Crossref

  17. Caizer Costica, Bonde Shital, Rai Mahendra, An Introduction to Magnetic Nanoparticles, in Magnetic Nanoparticles in Human Health and Medicine, 2021. Crossref

  18. Möddel Martin, Griese Florian, Kluth Tobias, Knopp Tobias, Estimating the Spatial Orientation of Immobilized Magnetic Nanoparticles with Parallel-Aligned Easy Axes, Physical Review Applied, 16, 4, 2021. Crossref

  19. Trisnanto Suko Bagus, Takemura Yasushi, Effective Néel relaxation time constant and intrinsic dipolar magnetism in a multicore magnetic nanoparticle system, Journal of Applied Physics, 130, 6, 2021. Crossref

  20. Albers Hannes, Knopp Tobias, Möddel Martin, Boberg Marija, Kluth Tobias, Modeling the magnetization dynamics for large ensembles of immobilized magnetic nanoparticles in multi-dimensional magnetic particle imaging, Journal of Magnetism and Magnetic Materials, 543, 2022. Crossref

  21. Albers Hannes, Kluth Tobias, Knopp Tobias, Simulating magnetization dynamics of large ensembles of single domain nanoparticles: Numerical study of Brown/Néel dynamics and parameter identification problems in magnetic particle imaging, Journal of Magnetism and Magnetic Materials, 541, 2022. Crossref

  22. Kaltenbacher Barbara, Nguyen Tram Thi Ngoc, Wald Anne, Schuster Thomas, Parameter Identification for the Landau–Lifshitz–Gilbert Equation in Magnetic Particle Imaging, in Time-dependent Problems in Imaging and Parameter Identification, 2021. Crossref

  23. Rietberg Max Tigo, Waanders Sebastiaan, Horstman-van de Loosdrecht Melissa Mathilde, Wildeboer Rogier R., ten Haken Bennie, Alic Lejla, Modelling of Dynamic Behaviour in Magnetic Nanoparticles, Nanomaterials, 11, 12, 2021. Crossref

  24. Draack Sebastian, Lucht Niklas, Remmer Hilke, Martens Michael, Fischer Birgit, Schilling Meinhard, Ludwig Frank, Viereck Thilo, Multiparametric Magnetic Particle Spectroscopy of CoFe2O4 Nanoparticles in Viscous Media, The Journal of Physical Chemistry C, 123, 11, 2019. Crossref

  25. Islam M. Khairul, Haque M. Manjurul, Rashid Rimi, Hasan Razibul, Islam M. Aminul, Khan M. N. Islam, Hoque S. Manjura, Size Effect on MRI/MFH Relaxations by a High Anisotropic CoFe2O4-Chitosan Conjugate and Imaging/Angiography Efficacy, Journal of Inorganic and Organometallic Polymers and Materials, 2022. Crossref

  26. Savliwala Shehaab, Liu (刘思彤) Sitong, Rinaldi-Ramos Carlos M., Particle motion artifacts in equilibrium magnetization measurements of large iron oxide nanoparticles, Journal of Magnetism and Magnetic Materials, 547, 2022. Crossref

  27. Fanti Alessandro, Lodi Matteo Bruno, Vacca Giuliano, Mazzarella Giuseppe, Numerical Investigation of Bone Tumor Hyperthermia Treatment Using Magnetic Scaffolds, IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 2, 4, 2018. Crossref

  28. Dednam W., Sabater C., Botha A.E., Lombardi E.B., Fernández-Rossier J., Caturla M.J., Spin-lattice dynamics simulation of the Einstein–de Haas effect, Computational Materials Science, 209, 2022. Crossref

  29. Kröger Martin, Ilg Patrick, Combined dynamics of magnetization and particle rotation of a suspended superparamagnetic particle in the presence of an orienting field: Semi-analytical and numerical solution, Mathematical Models and Methods in Applied Sciences, 32, 07, 2022. Crossref

  30. Barrera Gabriele, Allia Paolo, Tiberto Paola, Magnetization Dynamics of Superparamagnetic Nanoparticles for Magnetic Particle Spectroscopy and Imaging, Physical Review Applied, 18, 2, 2022. Crossref

  31. Ilg Patrick, Kröger Martin, Longest relaxation time versus maximum loss peak in the field-dependent longitudinal dynamics of suspended magnetic nanoparticles, Physical Review B, 106, 13, 2022. Crossref

  32. Singh Sobhit, Seehra Mohindar S., Testing the validity of the core-shell-surface layer model on the size dependence of effective magnetic anisotropy in magnetic nanoparticles, Frontiers in Materials, 9, 2022. Crossref

Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa Políticas de preços e assinaturas Begell House Contato Language English 中文 Русский Português German French Spain