Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Critical Reviews™ in Biomedical Engineering
SJR: 0.26 SNIP: 0.375 CiteScore™: 1.4

ISSN Imprimir: 0278-940X
ISSN On-line: 1943-619X

Volumes:
Volume 48, 2020 Volume 47, 2019 Volume 46, 2018 Volume 45, 2017 Volume 44, 2016 Volume 43, 2015 Volume 42, 2014 Volume 41, 2013 Volume 40, 2012 Volume 39, 2011 Volume 38, 2010 Volume 37, 2009 Volume 36, 2008 Volume 35, 2007 Volume 34, 2006 Volume 33, 2005 Volume 32, 2004 Volume 31, 2003 Volume 30, 2002 Volume 29, 2001 Volume 28, 2000 Volume 27, 1999 Volume 26, 1998 Volume 25, 1997 Volume 24, 1996 Volume 23, 1995

Critical Reviews™ in Biomedical Engineering

DOI: 10.1615/CritRevBiomedEng.v28.i12.180
pages 109-113

Femoral Strain Profiles Under Simulated 3-D Muscle and Joint Loads for Heel Strike, Midstance, and Toe Off

Robert A. Latour
Department of Bioengineering and Materials Science & Engineering, 501 Rhodes Research Center, Clemson University, Clemson, SC 29634.
Michael A. Brattain
Department of Bioengineering and Materials Science & Engineering, 501 Rhodes Research Center, Clemson University, Clemson, SC 29634.

RESUMO

A universal static hip joint simulation apparatus was designed to simulate both 3-D joint and 3-D muscle forces for each of the three load-bearing phases of normal gait. The adjustability provided by the apparatus allowed for the consideration of femoral orientation, hip joint contact force, and primary active muscle loads for each simulated activity. Use of this apparatus enables the biomechanical response of the femur to be more fully and accurately determined under a full range of everyday activities. Results demonstrate that the proximal femur experiences significantly higher levels of strain during the activities of toe off and heel strike than during midstance. This evaluation underscores the importance of considering each phase of gait when investigating the biomechanical response of the femur, which should be especially relevant in the design and evaluation of femoral components for hip joint arthroplasty. Future studies are planned for femoral strain evaluation following simulated hip joint replacement. By providing a more complete strain profile evaluation of the femur as a function of implant design, the use of this apparatus should contribute to the development of new femoral component designs for improved patient care.


Articles with similar content:

A New Design for Maximum Conformity of Total Knee Prosthesis to Femur and Tibia
Journal of Long-Term Effects of Medical Implants, Vol.26, 2016, issue 4
Ismail Hakki Korkmaz, Ömer S. Yildirim, İrfan Kaymaz
The Biomechanics of Upper Extremity Kinematic and Kinetic Modeling: Applications to Rehabilitation Engineering
Critical Reviews™ in Biomedical Engineering, Vol.36, 2008, issue 2-3
Gerald F. Harris, Brooke A. Slavens
Optimization of Spinal Implant Screw for Lower Vertebra through Finite Element Studies
Journal of Long-Term Effects of Medical Implants, Vol.24, 2014, issue 2-3
Santanu Majumder, Jayanta Kumar Biswas, Santanu Kr. Karmakar, Partha Sarathi Banerjee, Amit Roychowdhury, Subrata Saha
A Real-World Comparative Assessment of Complications Following Various Mid-Urethral Sling Procedures for the Treatment of Stress Urinary Incontinence
Journal of Long-Term Effects of Medical Implants, Vol.22, 2012, issue 4
Piet Hinoul, Chad Moretz, Roumen Kozarev, Kristene Whitmore, Heidi Waters, Glenn Magee, Sanjoy Roy
A 3-D FEM Analysis of Single and Multiple Screw-Root Dental Implant Fixed in a Mandible
Critical Reviews™ in Biomedical Engineering, Vol.28, 2000, issue 3&4
Amit Roychowdhury, S. Pal