Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Critical Reviews™ in Biomedical Engineering
SJR: 0.207 SNIP: 0.376 CiteScore™: 0.79

ISSN Imprimir: 0278-940X
ISSN On-line: 1943-619X

Volumes:
Volume 47, 2019 Volume 46, 2018 Volume 45, 2017 Volume 44, 2016 Volume 43, 2015 Volume 42, 2014 Volume 41, 2013 Volume 40, 2012 Volume 39, 2011 Volume 38, 2010 Volume 37, 2009 Volume 36, 2008 Volume 35, 2007 Volume 34, 2006 Volume 33, 2005 Volume 32, 2004 Volume 31, 2003 Volume 30, 2002 Volume 29, 2001 Volume 28, 2000 Volume 27, 1999 Volume 26, 1998 Volume 25, 1997 Volume 24, 1996 Volume 23, 1995

Critical Reviews™ in Biomedical Engineering

DOI: 10.1615/CritRevBiomedEng.2019030527
pages 365-378

Potential Applications of Silk Fibroin as Vascular Implants: A Review

Melissa Puerta
Grupo de Investigación sobre Nuevos Materiales (GINUMA), Escuela de Ingeniería, and Grupo de Dinámica Cardiovascular (GDC), Escuela de Ciencias de la Salud, Universidad Pontificia Bolivariana, Circular 1ra #70-01, 0500031, Medellín, Antioquia, Colombia
Y. Montoya
Grupo de Investigación sobre Nuevos Materiales (GINUMA), Escuela de Ingeniería, and Grupo de Dinámica Cardiovascular (GDC), Escuela de Ciencias de la Salud, Universidad Pontificia Bolivariana, Circular 1ra #70-01, 0500031, Medellín, Antioquia, Colombia
J. Bustamante
Grupo de Investigación sobre Nuevos Materiales (GINUMA), Escuela de Ingeniería, and Grupo de Dinámica Cardiovascular (GDC), Escuela de Ciencias de la Salud, Universidad Pontificia Bolivariana, Circular 1ra #70-01, 0500031, Medellín, Antioquia, Colombia
A. Restrepo-Osorio
Grupo de Investigación sobre Nuevos Materiales (GINUMA), Escuela de Ingeniería, and Grupo de Dinámica Cardiovascular (GDC), Escuela de Ciencias de la Salud, Universidad Pontificia Bolivariana, Circular 1ra #70-01, 0500031, Medellín, Antioquia, Colombia

RESUMO

Cardiovascular disease is a worldwide main cause of morbidity and mortality. Treatment alternatives include the use of cardiovascular implants that have generated a constant search for materials, and transformation processes that provide structures similar to those that need to be replaced. Among the biomaterials available for vascular implants, silk fibroin (SF) is of great interest because it is a natural, biodegradable, biocompatible protein. In addition, SF has outstanding mechanical properties and can be easily processed by various techniques. This article presents a general review of SF, its potential use as a biomaterial for vascular applications, and modifications that improve its hemocompatibility.

Referências

  1. OMS | Enfermedades cardiovasculares [homepage on the Internet]. WHO. World Health Organization; 2016 [cited 2018 Sep 18]. Available from: http://www.who.int/cardiovascular_diseases/es/. .

  2. Kitsara M, Agbulut O, Kontziampasis D, Chen Y, Menasche P. Fibers for hearts: a critical review on electro-spinning for cardiac tissue engineering. Acta Biomater. 2017;48:20-40. .

  3. Hasan A, Memic A, Annabi N, Hossain M, Paul A, Dokmeci MR, Dehghani F, Khademhosseini A. Electrospun scaffolds for tissue engineering of vascular grafts. Acta Biomater. 2014;10:11-25. .

  4. Jing X, Mi HY, Salick MR, Cordie TM, Peng XF, Turng LS. Electrospinning thermoplastic polyurethane/graphene oxide scaffolds for small diameter vascular graft applications. Mater Sci Eng C. 2015;49:40-50. .

  5. Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, Ferranti SD, Floyd J, Fornage M, Gillespie C, Isasi CR, Jimenez MC, Jordan LC, Judd SE, Lackland D, Lichtman J, Lisabeth L, Liu S, Longenecker CT, Mackey RH, Matsushita K, Mozaffarian D, Mussolino ME, Nasir K, Neumar RW, Palaniappan L, Pandey DK, Thiagarajan RR, Reeves MJ, Ritchey M, Rodriguez CJ, Roth GA, Rosamond WD, Sasson C, Towfighi, Tsao CW, Turner MB, Virani SS, Voeks JH, Willey JZ, Wu JH, Alger HM, Wong SS, Muntner P. Heart disease and stroke statistics'2017 update: a report from the American Heart Association. 2017;135:146-603. .

  6. Ruiz-Esparza G, Flores-Arredondo J, Segura-Ibarra V, Torre-Amione G, Ferrari M, Blanco E, Serda R. The physiology of cardiovascular disease and innovative liposomal platforms for therapy. Int J Nanomed. 2013;8:629-640. .

  7. Kalogeris T, Baines CP, Krenz M, Korthuis RJ. Ischemia/ reperfusion. Compr Physiol. 2017;7:113-170. .

  8. Roberts BW, Kilgannon JH, Chansky ME, Mittal N, Wooden J, Parrillo JE, Trzeciak S. Multiple organ dysfunction after return of spontaneous circulation in postcardiac arrest syndrome. Crit Care Med. 2013;41:1492-1501. .

  9. Kim J, Perales JP, Zhang W, Yin T, Shinozaki K, Hong A, Lampe JW, Becker LC. The responses of tissues from the brain, heart, kidney, and liver to resuscitation following prolonged cardiac arrest by examining mitochondrial respiration in rats. Oxid Med Cell Longev. 2016;2016: 1-7. .

  10. Reamy BV, Williams PM, Kuckel DP. Prevention of cardiovascular disease. Prim Care-Clin Off Pract. 2018;45:25-44. .

  11. Mazurek R, Dave JM, Chandran RR, Misra A, Sheikh AQ, Greif DM. Vascular cells in blood vessel wall development and disease. Adv Pharmacol. 2017;78:323-350. .

  12. Generali M, Dijkman PE, Hoerstrup SP. Bioresorbable scaffolds for cardiovascular tissue engineering. Cit EMJ Int Cardiol. 2014;1:91-99. .

  13. Ravi S, Chaikof EL. Biomaterials for vascular tissue engineering. Regen Med. 2010;5:1-21. .

  14. Yalcin-Enis I, Gok-Sadikoglu T. Design parameters for electrospun biodegradable vascular grafts. J Ind Text. 2016;47:1-23. .

  15. Sell SA, McClure MJ, Garg K, Wolfe PS, Bowlin GL. Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering. Adv Drug Deliv Rev. 2009;61:1007-1019. .

  16. Zhang WJ, Liu W, Cui L, Cao Y. Tissue engineering of blood vessel. J Cell Mol Med. 2000;11:945-957. .

  17. Greenwald SE, Berry CL. Improving vascular grafts: the importance of mechanical and haemodynamic properties. J Pathol. 2008;190:292-299. .

  18. Salacinski HJ, Goldner S, Giudiceandrea A, Hamilton G, Seifalian AM, Edwards A, Carson RJ. The mechanical behavior of vascular grafts: a review. J Biomater Appl. 2001;15:241-278. .

  19. Mi HY, Jiang Y, Jing X, Enriquez E, Li H, Li Q, Turng LS. Fabrication of triple-layered vascular grafts composed of silk fibers, polyacrylamide hydrogel, and polyurethane nanofibers with biomimetic mechanical properties. Mater Sci Eng C. 2019;98:241-249. .

  20. Wu J, Hu C, Tang Z, Yu Q, Liu X, Chen H. Tissue-engineered vascular grafts: balance of the four major requirements. Colloids Interface Sci Commun. 2018;23:34-44. .

  21. Yu E, Mi HY, Zhang J, Thomson J, Turng LS. Development of biomimetic thermoplastic polyurethane/fibroin small-diameter vascular grafts via a novel electrospinning approach. J Biomed Mater Res Part A. 2017;1-39. .

  22. Soffer L, Wang X, Zhang X, Kluge J, Dorfmann L, Kaplan DL, Leisk G. Silk-based electrospun tubular scaffolds for tissue-engineered vascular grafts. J Biomater Sci Polym Ed. 2009;19:653-664. .

  23. Silvestri A, Boffito M, Sartori S, Ciardelli G. Biomimetic materials and scaffolds for myocardial tissue regeneration. Macromol Biosci. 2013;13:984-1019. .

  24. Bosio VE, Brown J, Rodriguez MJ, Kaplan DL. Biode-gradable porous silk microtubes for tissue vascularization. J Mater Chem B. 2017;5:1227-1235. .

  25. Fukunishi T, Shoji T, Shinoka T. Nanofiber composites in vascular tissue engineering. In: Nanofiber Composites for Biomedical Applications. 2017;455-481. .

  26. GORE EXCLUDER AAA Endoprosthesis | Gore Medical [homepage on the Internet]. [cited 2019 May 11]. Available from: https://www.goremedical.com/products/ excluder. .

  27. Singh C, Wong C, Wang X. Medical textiles as vascular implants and their success to mimic natural arteries. J Funct Biomater. 2015;6:500-525. .

  28. Montini-Ballarin F, Calvo D, Caracciolo PC, Rojo F, Frontini PM, Abraham GA, Guinea GV. Mechanical behavior of bilayered small-diameter nanofibrous structures as biomimetic vascular grafts. J Mech Behav Biomed Mater. 2016;60:220-233. .

  29. Catto V, Fare S, Cattaneo I, Figliuzzi M, Alessandrino A, Freddi G, Remuzzi A, Tanz MC. Small diameter electro-spun silk fibroin vascular grafts: mechanical properties, in vitro biodegradability, and in vivo biocompatibility. Mater Sci Eng C. 2015;54:101-111. .

  30. Liu H, Li X, Zhou G, Fan H, Fan Y. Electrospun sulfated silk fibroin nanofibrous scaffolds for vascular tissue engineering. Biomaterials. 2011;32:3784-3793. .

  31. Marelli B, Alessandrino A, Fare S, Freddi G, Mantovani D, Tanzi MC. Compliant electrospun silk fibroin tubes for small vessel bypass grafting. Acta Biomater. 2010;6:4019-4026. .

  32. Karimian A, Parsian H, Majidinia M, Rahimi M, Mir M, Kafil HS, Shafiei-Irannejad V, Kheyrollah M, Ostadi H, Yousefi B. Nanocrystalline cellulose: preparation, physicochemical properties, and applications in drug delivery systems. Int J Biol Macromol. 2019;133:850-859. .

  33. Aussel A, Thebaud N, Berard X, Brizzi V, Delmond S, Bareille R, Siadous R, James C, Ripoche J, Durand M, Montembault A, Burdin B, Letourneur D, L'Heureux N, David L, Bordenave L. Chitosan-based hydrogels for developing a small-diameter vascular graft: in vitro and in vivo evaluation. Biomed Mater. 2018;12:1-33. .

  34. Goins A, Webb AR, Allen JB. Multi-layer approaches to scaffold-based small diameter vessel engineering: a review. Mater Sci Eng C. 2019;97:896-912. .

  35. Imre B, Pukanszky B. From natural resources to functional polymeric biomaterials. Eur Polym J. 2015;68:481-487. .

  36. Sell SA, Wolfe PS, Garg K, McCool JM, Rodriguez IA, Bowlin GL. The use of natural polymers in tissue engineering: a focus on electrospun extracellular matrix analogues. Polymers. 2010;2:522-553. .

  37. Adali T, Uncu M. Silk fibroin as a non thrombogenic bio- material. Int J Biol Macromol. 2016;90:11-19. .

  38. Fukayama T, Takagi K, Tanaka R, Hatakeyama Y, Aytemiz D, Suzuki Y, Asakura T. Biological reaction to small-diameter vascular grafts made of silk fibroin implanted in the abdominal aortae of rats. Ann Vasc Surg. 2015;29:341-352. .

  39. Unger RE, Peters K, Wolf M, Motta A, Migliaresi C, Kirkpatrick CJ. Endothelialization of a non-woven silk fibroin net for use in tissue engineering: growth and gene regulation of human endothelial cells. Biomaterials. 2004;25:5137-5146. .

  40. Qi Y, Wang H, Wei K, Yang Y, Zheng RY, Kim IS, Zhang KQ. A review of structure construction of silk fibroin biomaterials from single structures to multi-level structures. Int J Mol Sci. 2017;18:1-21. .

  41. Nivedita S, Sivaprasad V. Biomedical applications of Mulberry silk and its proteins: a review. J Inst Eng India Ser E. 2014;95:57-61. .

  42. Koh LD, Cheng Y, Teng C, Khin YW, Loh X, Tee SY, Low M, Ye E, Yu HD, Zhang YW, Han MY. Structures, mechanical properties and applications of silk fibroin materials. Prog Polym Sci. 2015;46:86-110. .

  43. Hardy JG, Scheibel TR. Composite materials based on silk proteins. Prog Polym Sci. 2010;35:1093-1115. .

  44. Sutherland TD, Young JH, Weisman S, Hayashi CY, Merritt DJ. Insect silk: one name, many materials. Annu Rev Entomol. 2010;55:171-188. .

  45. Banno Y, Shimada T, Kajiura Z, Sezutsu H. The Silk-worm: an attractive bioresource supplied by Japan. Exp Anim. 2010;59:139-146. .

  46. Hunt NC, Hallam D, Chichagova V, Steel DH, Lako M. The application of biomaterials to tissue engineering neural retina and retinal pigment epithelium. Adv Health Mat. 2018;1800226:1-31. .

  47. Panico A, Paladini F, Pollini M. Development of regenerative and flexible fibroin-based wound dressings. J Biomed Mater Res Part B Appl Biomater. 2018;1-12. .

  48. Kapoor S, Kundu SC. Silk protein based hydrogels: promising advanced materials for biomedical applications. Acta Biomater. 2016;31:17-32. .

  49. Omenetto FG, Kaplan DL. New opportunities for an ancient material. Science. 2010;329:528-531. .

  50. Lu Q, Hu X, Wang X, Kluge JA, Lu S, Cebe P, Kaplan DL. Water-insoluble silk films with silk I structure. Acta Biomater. 2010;6:1380-1387. .

  51. Vepari C, Kaplan DL. Silk as a biomaterial. Prog Polym Sci. 2007;32:991-1007. .

  52. Ude AU, Eshkoor RA, Zulkifili R, Ariffin AJ, Dzuraidah AW, Azhari CH. Bombyx mori silk fibre and its composite: a review of contemporary developments. Mater Des. 2014;57:298-305. .

  53. Soffer L, Wang X, Zhang X, Kluge J, Dorfmann L, Kaplan DL Leisk G. Silk-based electrospun tubular scaffolds for tissue-engineered vascular grafts. J Biomater Sci Polym Ed. 2008;19:653-664. .

  54. Lee JM, Kim JH, Lee OJ, Park CH. The fixation effect of a silk fibroin-bacterial cellulose composite plate in segmental defects of the zygomatic arch: an experimental study. JAMA Otolaryngol Head Neck Surg. 2013;139:629-635. .

  55. Kundu B, Rajkhowa R, Kundu SC, Wang X. Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev. 2013;65:457-470. .

  56. Kundu B, Kurland NE, Bano S, Patra C, Engel FB, Yadavalli VK, Kundu SC. Silk proteins for biomedical applications: bioengineering perspectives. Prog Polym Sci. 2014;39:251-267. .

  57. Wang J, Wei Y, Yi H, Liu Z, Sun D, Zhao H. Cytocompatibility of a silk fibroin tubular scaffold. Mater Sci Eng C. 2014;34:429-436. .

  58. Gellynck K, Verdonk PCM, Van Nimmen E, Almqvist KF, Gheysens T, Schoukens G, Langenhove LV, Kiekens P, Mertend J, Verbruggen G. Silkworm and spider silk scaffolds for chondrocyte support. J Mater Sci Mater Med. 2008;19:3399-3409. .

  59. Lundmark K, Westermark GT, Olsen A, Westermark P. Protein fibrils in nature can enhance amyloid protein A amyloidosis in mice: cross-seeding as a disease mechanism. Proc Natl Acad Sci USA. 2005;102:6098-6102. .

  60. Mao D, Zhu M, Zhang X, Ma R, Yang X, Ke T, Wang L, Li Z, Kong D, Li C. A macroporous heparin releasing silk fibroin scaffold improves islet transplantation outcome by promoting islet revascularisation and survival. Acta Biomater. 2017;59:1-11. .

  61. Kim JH, Park CH, Lee OJ, Lee JM, Kim JW, Park YH, Ki CS. Preparation and in vivo degradation of controlled bio-degradability of electrospun silk fibroin nanofiber mats. J Biomed Mater Res. Part A. 2012;100A:3287-3295. .

  62. Zhou J, Cao C, Ma X, Hu L, Chen L, Wang C. In vitro and in vivo degradation behavior of aqueous-derived electrospun silk fibroin scaffolds. Polym Degrad Stab. 2010;95:1679-1685 .

  63. Janani G, Nandi SK, Mandal BB. Functional hepatocyte clusters on bioactive blend silk matrices towards generating bioartificial liver constructs. Acta Biomater. 2018;67:167-182. .

  64. Motta A, Maniglio D, Migliaresi C, Kim HJ, Wan X, Hu X, Kaplan DL. Silk fibroin processing and thrombogenic responses. J Biomater Sci Polym Ed. 2009;20:1875-1897. .

  65. Aytemiz D, Suzuki Y, Shindo T, Saotome T, Tanaka R, Asakura T. In vitro and in vivo evaluation of hemocompatibility of silk fibroin based artificial vascular grafts. Int J Chem. 2014;6:1-14. .

  66. Lovett M, Cannizzaro C, Daheron L, Messmer B, Vunjak-Novakovic G, Kaplan DL. Silk fibroin microtubes for blood vessel engineering. Biomaterials. 2007;28: 5271-5279. .

  67. Fazley Elahi M, Guan G, Wang L. Hemocompatibility of surface modified silk fibroin materials: a review. Rev Adv Mater Sci. 2014;38:148-159. .

  68. Gao Z, Wang S, Zhu HS, Zhao DX, Xu JC. Improvements of anticoagulant activities of silk fibroin films with fucoidan. Front Mater Sci China. 2008;2:221-227. .

  69. Boffito M, Ciardelli G. Polymeric scaffolds for cardiac tissue engineering: requirements and fabrication technologies. Polym Int. 2013;1-10. .

  70. Capulli AK, Macqueen LA, Sheehy SP, Parker KK. Fibrous scaffolds for building hearts and heart parts. Adv Drug Deliv Rev. 2016;96:83-102. .

  71. Filipe EC, Santos M, Hung J, Lee BSL, Yang N, Chan AHP, Ng MKC, Rnjak-Kovacina J, Wise SG. Rapid endo-thelialization of off-the-shelf small diameter silk vascular grafts. JACC Basic Transl Sci. 2018;3(1):38-53. .

  72. Lovett M, Eng G, Kluge J, Cannizzaro C, Vunjak-novakovic G, Kaplan DL. Tubular silk scaffolds for small diameter vascular grafts. Organogenesis. 2010;6:217-224. .

  73. Enomoto S, Sumi M, Kajimoto K, Nakazawa Y, Takahashi R, Takabayashi C, Asakura T, Sata M. Long-term patency of small-diameter vascular graft made from fibroin, a silk-based biodegradable material. J Vasc Surg. 2010;51:155-164. .

  74. Aytemiz D, Sakiyama W, Suzuki Y, Nakaizumi N, Tanaka R, Ogawa Y, Takagi Y, Nakazawa Y, Asakura T. Small-diameter silk vascular grafts (3 mm diameter) with a double-raschel knitted silk tube coated with silk fibroin sponge. Adv Healthc Mater. 2013;2:361-368. .

  75. Yagi T, Sato M, Nakazawa Y, Tanaka K, Sata M, Itoh K, Takagi Y, Asakura T. Preparation of double-raschel knitted silk vascular grafts and evaluation of short-term function in a rat abdominal aorta. J Artif Organs. 2011;14: 89-99. .

  76. Nakazawa Y, Sato M, Takahashi R, Aytemiz D, Takabayashi C, Tamura T, Enomoto S, Sata M, Asakura T. Development of small-diameter vascular grafts based on silk fibroin fibers from Bombyx mori for vascular regeneration. J Biomater Sci Polym Ed. 2011;22:195-206. .

  77. Wei Y, Sun D, Yi H, Wang J. Characterization of a PEG-DE cross-linked tubular silk scaffold. Text Res J. 2014;84:959-967. .

  78. Cattaneo I, Figliuzzi M, Azzollini N, Catto V, Fare S, Tanzi MC, Alessandrino A, Freddi G, Remuzzi A. In vivo regeneration of elastic lamina on fibroin biodegradable vascular scaffold. Int J Artif Organs. 2013;36: 166-174. .

  79. Zhou J, Cao C, Ma X, Lin J. Electrospinning of silk fibroin and collagen for vascular tissue engineering. Int J Biol Macromol. 2010;47:514-519. .

  80. Sato M, Nakazawa Y, Takahashi R, Tanaka K, Sata M, Aytemiz D, Asakura T. Small-diameter vascular grafts of Bombyx mori silk fibroin prepared by a combination of electrospinning and sponge coating. Mater Lett. 2010;64:1786-1788. .

  81. Zhan K, Bai L, Wu Q. Fractal characteristics of the micro- vascular network: a useful index to assess vascularization level of porous silk fibroin biomaterial. J Biomed Mater Res. 2017;1-29. .

  82. Zhang W, Wray LS, Rnjak-Kovacina J, Xu L, Zou D, Wang S, Zhang M, Dong J, Li G, Kaplan DL, Jiang X. Vascularization of hollow channel-modified porous silk scaffolds with endothelial cells for tissue regeneration. Biomaterials. 2015;56:68-77. .

  83. Wang Q, Tu F, Liu Y, Zhang Y, Li H, Kang Z, Yin Y, Wang J. The effect of hirudin modification of silk fibroin on cell growth and antithrombogenicity. Mater Sci Eng C. 2017;75:237-246. .

  84. Wang S, Gao Z, Chen X, Lian X, Zhu H, Zheng J, Sun L. The anticoagulant ability of ferulic acid and its applications for improving the blood compatibility of silk fibroin. Biomed Mater. 2008;3:1-6 .

  85. Ozturk B, Parkinson C, Gonzalez-Miquel M. Extraction of polyphenolic antioxidants from orange peel waste using deep eutectic solvents. Sep Purif Technol. 2018;206:1-13. .

  86. Gu J, Yang X, Zhu H. Surface sulfonation of silk fibroin film by plasma treatment and in vitro antithrombogenicity study. Mater Sci Eng C. 2002;20:199-202. .

  87. Seib FP, Herklotz M, Burke KA, Maitz MF, Werner C, Kaplan DL. Multifunctional silk-heparin biomaterials for vascular tissue engineering applications. Biomaterials. 2014;35:83-91. .

  88. Wang S, Zhang Y, Wang H, Dong Z. Preparation, char-acterization and biocompatibility of electrospinning heparin-modified silk fibroin nanofibers. Int J Biol Macromol. 2011;48:345-353. .

  89. Zhu M, Wang K, Mei J, Li C, Zhang J, Zheng W, An D, Xiao N, Zhao Q, Kong D, Wang L. Fabrication of highly interconnected porous silk fibroin scaffolds for potential use as vascular grafts. Acta Biomater. 2014;10: 2014-2023. .

  90. Zamani M, Khafaji M, Naji M, Vossoughi M, Alemzadeh I, Haghighipour N. A biomimetic heparinized composite silk-based vascular scaffold with sustained antithrombo-genicity. Sci Rep. 2017;7:1-14. .

  91. Maghdouri-White Y, Bowlin GL, Lemmon CA, Dreau D. Bioengineered silk scaffolds in 3D tissue modeling with focus on mammary tissues. Mater Sci Eng C. 2016;59:1168-1680. .

  92. Wang L, Luo Z, Zhang Q, Guan Y, Cai J, You R, Li X. Effect of degumming methods on the degradation behavior of silk fibroin biomaterials. 2019;20:45-50. .

  93. Terada D, Yokoyama Y, Hattori S, Kobayashi H, Tamada Y. The outermost surface properties of silk fibroin films reflect ethanol-treatment conditions used in biomaterial preparation. Mater Sci Eng C. 2016;58:119-126. .

  94. Zhou J, Zhang B, Liu X, Shi L, Zhu J, Wei D, Zhing J, Sun G, He D. Facile method to prepare silk fibroin/hyaluronic acid films for vascular endothelial growth factor release. Carbohydr Polym. 2016;143:301-309. .

  95. Hu X, Shmelev K, Sun L, Gil ES, Park SH, Cebe P, Kaplan DL. Regulation of silk material structure by temperature-controlled water vapor annealing. Biomacro-molecules. 2011;12:1686-1696. .