Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Critical Reviews™ in Biomedical Engineering
SJR: 0.207 SNIP: 0.376 CiteScore™: 0.79

ISSN Imprimir: 0278-940X
ISSN On-line: 1943-619X

Volumes:
Volume 47, 2019 Volume 46, 2018 Volume 45, 2017 Volume 44, 2016 Volume 43, 2015 Volume 42, 2014 Volume 41, 2013 Volume 40, 2012 Volume 39, 2011 Volume 38, 2010 Volume 37, 2009 Volume 36, 2008 Volume 35, 2007 Volume 34, 2006 Volume 33, 2005 Volume 32, 2004 Volume 31, 2003 Volume 30, 2002 Volume 29, 2001 Volume 28, 2000 Volume 27, 1999 Volume 26, 1998 Volume 25, 1997 Volume 24, 1996 Volume 23, 1995

Critical Reviews™ in Biomedical Engineering

DOI: 10.1615/CritRevBiomedEng.2015012287
pages 61-95

Microstimulation: Principles, Techniques, and Approaches to Somatosensory Neuroprosthesis

Mulugeta Semework
Department of Neuroscience, Columbia University, 1051 Riverside Dr., Unit 87, New York, NY, 10032

RESUMO

The power of movement of electrically charged particles has been used to alleviate an array of illnesses and help control some human body parts. Microstimulation, the electrical current−driven excitation of neural elements, is now being aimed at brain−machine interfaces (BMIs), brain-controlled external devices that improve quality of life for people such as those who have lost the ability to use their limbs. This effort is motivated by behavioral experiments that indicate a direct link between microstimulation-induced sensory experience and behavior, pointing to the possibility of optimizing and controlling the outputs of BMIs. Several laboratories have focused on using electrical stimulation to return somatosensory feedback from prosthetic limbs directly to the user's central nervous system. However, the difficulty of the problem has led to limited success thus far, and there is a need for a better understanding of the basic principles of neural microstimulation. This article provides a review of the available literature and some recent work at Downstate Medical Center and Columbia University on microstimulation of the primate and rodent somatosensory (S1) cortex and the ventral posterolateral thalamus. It is aimed at contributing to the existing knowledge base to generate good behavioral responses and effective, BMI-appropriate somatosensory feedback. In general, the threshold for the particular brain tissue in response to current−amplitude has to be determined by rigorous experimentation. For consistently reproducible results, hardware and thresholds for microstimulation have to be specified. In addition, effects on motor functions, including unwanted side effects in response to the microstimulation of brain tissue, must be examined to take the field from bench to bedside.