Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Journal of Enhanced Heat Transfer
Fator do impacto: 0.562 FI de cinco anos: 0.605 SJR: 0.175 SNIP: 0.361 CiteScore™: 0.33

ISSN Imprimir: 1065-5131
ISSN On-line: 1026-5511

Volumes:
Volume 26, 2019 Volume 25, 2018 Volume 24, 2017 Volume 23, 2016 Volume 22, 2015 Volume 21, 2014 Volume 20, 2013 Volume 19, 2012 Volume 18, 2011 Volume 17, 2010 Volume 16, 2009 Volume 15, 2008 Volume 14, 2007 Volume 13, 2006 Volume 12, 2005 Volume 11, 2004 Volume 10, 2003 Volume 9, 2002 Volume 8, 2001 Volume 7, 2000 Volume 6, 1999 Volume 5, 1998 Volume 4, 1997 Volume 3, 1996 Volume 2, 1995 Volume 1, 1994

Journal of Enhanced Heat Transfer

DOI: 10.1615/JEnhHeatTransf.2013007609
pages 235-250

CONDENSATION HEAT TRANSFER AND PRESSURE DROP OF R-410A IN THREE 7.0MM OUTER DIAMETER MICROFIN TUBES HAVING DIFFERENT INSIDE GEOMETRIES

Nae-Hyun Kim
Department of Mechanical Engineering, Incheon National University, 12-1 Songdo-Dong, Yeonsu-Gu Inchon, 22012, Korea
H. W. Byun
Department of Mechanical Engineering, University of lncheon, 12-1, Songdo-Dong, Yeonsu-gu, Incheon, 406-772, Republic of Korea
J. K. Lee
School of Mechanical System Engineering, Incheon National University, Incheon, Korea

RESUMO

R-410A condensation heat transfer and pressure drop data are provided for three different 7.0 mm outer diameter microfin tubes. The microfin tubes had different helix angles, fin heights, and fin apex angles. Tests were conducted for a range of quality (0.2 ∼ 0.8), mass flux (345 kg/m2s ∼ 604 kg/m2s), and saturation temperature (45°C ∼ 55°C). It was found that a microfin tube having a larger interfin area or smaller helix angle is more beneficial for condensation heat transfer. Increased flow velocity in the interfin region along with stronger turbulence and surface tension induced drainage for sharper fins may be responsible for the increase of heat transfer coefficient. Pressure drop was also larger in a microfin tube having a larger apex angle. Both heat transfer coefficient and pressure drop increased as mass flux or quality increased. However, they decreased as saturation temperature increased. The range of heat transfer enhancement factor (1.23 ∼ 1.83) was comparable with that of the pressure drop penalty factor (1.36 ∼ 2.26). Data are compared with available heat transfer and pressure drop correlations.


Articles with similar content:

CONDENSATION HEAT TRANSFER AND PRESSURE DROP OF R-410A IN INTERNALLY ENHANCED FLAT ALUMINUM MULTI-PORT TUBES
Journal of Enhanced Heat Transfer, Vol.22, 2015, issue 6
Nae-Hyun Kim
COMPARISON OF EVAPORATION PRESSURE DROP CHARACTERISTICS IN HORIZONTAL THREE-DIMENSIONAL ENHANCED TUBES
International Heat Transfer Conference 16, Vol.14, 2018, issue
Yan He, S.A. Sherif, Xiang Ma, Wei Li, Weiyu Tang
Condensation Heat Transfer of R-410A and R-22 in U-Tubes
International Heat Transfer Conference 15, Vol.3, 2014, issue
Cheng-Sheng Liu, Liang-Han Chien
Experimental Studies of Condensation Heat Transfer in an Inclined Microfin Tube
International Heat Transfer Conference 15, Vol.3, 2014, issue
Josua Petrus Meyer, Jaco Dirker, Adecunle O. Adelaja
Evaporation heat transfer characteristics of low GWP refrigerants
Second Thermal and Fluids Engineering Conference, Vol.20, 2017, issue
Minsoo Kim, Keumnam Cho