Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
International Journal for Uncertainty Quantification
Fator do impacto: 3.259 FI de cinco anos: 2.547 SJR: 0.417 SNIP: 0.8 CiteScore™: 1.52

ISSN Imprimir: 2152-5080
ISSN On-line: 2152-5099

Open Access

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.v1.i2.20
pages 119-146

DESIGN UNDER UNCERTAINTY EMPLOYING STOCHASTIC EXPANSION METHODS

Michael S. Eldred
Sandia National Laboratories, P. O. Box 5800, Mail Stop: 1318, Org: 01411, Albuquerque, NM 87185-1318, USA
Howard C. Elman
Department of Computer Science and Institute for Advanced Computer Studies, University of Maryland, USA

RESUMO

Nonintrusive polynomial chaos expansion (PCE) and stochastic collocation (SC) methods are attractive techniques for uncertainty quantification due to their fast convergence properties and ability to produce functional representations of stochastic variability. PCE estimates coefficients for known orthogonal polynomial basis functions based on a set of response function evaluations, using sampling, linear regression, tensor-product quadrature, cubature, or Smolyak sparse grid approaches. SC, on the other hand, forms interpolation functions for known coefficients and requires the use of structured collocation point sets derived from tensor product or sparse grids. Once PCE or SC representations have been obtained for a response metric of interest, analytic expressions can be derived for the moments of the expansion and for the design derivatives of these moments, allowing for efficient design under uncertainty formulations involving moment control (e.g., robust design). This paper presents two approaches for moment design sensitivities, one involving a single response function expansion over the full range of both the design and uncertain variables and one involving response function and derivative expansions over only the uncertain variables for each instance of the design variables. These two approaches present trade-offs involving expansion dimensionality, global versus local validity, collocation point data requirements, and L2 (mean, variance, probability) versus L (minima, maxima) interrogation requirements. Given this capability for analytic moments and moment sensitivities, bilevel, sequential, and multifidelity formulations for design under uncertainty are explored. Computational results are presented for a set of algebraic benchmark test problems, with attention to design formulation, stochastic expansion type, stochastic sensitivity approach, and numerical integration method.


Articles with similar content:

NONLINEAR NONLOCAL MULTICONTINUA UPSCALING FRAMEWORK AND ITS APPLICATIONS
International Journal for Multiscale Computational Engineering, Vol.16, 2018, issue 5
Eric T. Chung, Yalchin Efendiev, Wing T. Leung, Mary Wheeler
BAYESIAN MULTISCALE FINITE ELEMENT METHODS. MODELING MISSING SUBGRID INFORMATION PROBABILISTICALLY
International Journal for Multiscale Computational Engineering, Vol.15, 2017, issue 2
Wing Tat Leung, B. Mallick, Yalchin Efendiev, N. Guha, V. H. Hoang, S. W. Cheung
SPARSE GENERALIZED MULTISCALE FINITE ELEMENT METHODS AND THEIR APPLICATIONS
International Journal for Multiscale Computational Engineering, Vol.14, 2016, issue 1
Wing Tat Leung, Eric T. Chung, Yalchin Efendiev, Guanglian Li
ITERATIVE METHODS FOR SCALABLE UNCERTAINTY QUANTIFICATION IN COMPLEX NETWORKS
International Journal for Uncertainty Quantification, Vol.2, 2012, issue 4
Tuhin Sahai, Amit Surana, Andrzej Banaszuk
STOCHASTIC DESIGN AND CONTROL IN RANDOM HETEROGENEOUS MATERIALS
International Journal for Multiscale Computational Engineering, Vol.9, 2011, issue 4
Phaedon-Stelios Koutsourelakis, Raphael Sternfels