Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
International Journal for Uncertainty Quantification
Fator do impacto: 4.911 FI de cinco anos: 3.179 SJR: 1.008 SNIP: 0.983 CiteScore™: 5.2

ISSN Imprimir: 2152-5080
ISSN On-line: 2152-5099

Open Access

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2012003671
pages 39-46

COMPUTING GREEN'S FUNCTIONS FOR FLOW IN HETEROGENEOUS COMPOSITE MEDIA

David A. Barajas-Solano
Department of Mechanical and Aerospace Engineering, University of California, San Diego, USA
Daniel M. Tartakovsky
Department of Energy Resources, Engineering, Stanford University, 367 Panama St., Stanford, CA 94305, USA

RESUMO

Green's functions lie at the foundation of many uncertainty quantification and uncertainty reduction techniques (e.g., the moment differential equation approach, parameter and/or source identification, and data assimilation). We discuss an accurate and numerically efficient approach to compute Green's functions for transport processes in heterogeneous composite media. We focus on elliptic partial differential equations with (random) discontinuous coefficients. The approach relies on a regularization technique to obtain an associated regular problem, which can be solved using standard finite element methods. We perform numerical experiments to assess the performance of the regularization approach and to evaluate the effects of strong coefficient discontinuities on the Green's function behavior.


Articles with similar content:

BAYESIAN MULTISCALE FINITE ELEMENT METHODS. MODELING MISSING SUBGRID INFORMATION PROBABILISTICALLY
International Journal for Multiscale Computational Engineering, Vol.15, 2017, issue 2
Wing Tat Leung, B. Mallick, Yalchin Efendiev, N. Guha, V. H. Hoang, S. W. Cheung
ITERATIVE METHODS FOR SCALABLE UNCERTAINTY QUANTIFICATION IN COMPLEX NETWORKS
International Journal for Uncertainty Quantification, Vol.2, 2012, issue 4
Tuhin Sahai, Amit Surana, Andrzej Banaszuk
ORTHOGONAL BASES FOR POLYNOMIAL REGRESSION WITH DERIVATIVE INFORMATION IN UNCERTAINTY QUANTIFICATION
International Journal for Uncertainty Quantification, Vol.1, 2011, issue 4
Oleg Roderick, Mihai Anitescu, Fred Hickernell, Yiou Li
A STOCHASTIC INVERSE PROBLEM FOR MULTISCALE MODELS
International Journal for Multiscale Computational Engineering, Vol.15, 2017, issue 3
N. Panda, Lindley Graham, Clint Dawson, Troy Butler, Donald Estep
REDUCED ORDER MODELING FOR NONLINEAR MULTI-COMPONENT MODELS
International Journal for Uncertainty Quantification, Vol.2, 2012, issue 4
Hany S. Abdel-Khalik, Christopher Kennedy, Jason Hite, Youngsuk Bang