Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
International Journal for Uncertainty Quantification
Fator do impacto: 3.259 FI de cinco anos: 2.547 SJR: 0.417 SNIP: 0.8 CiteScore™: 1.52

ISSN Imprimir: 2152-5080
ISSN On-line: 2152-5099

Open Access

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2015008446
pages 275-295

AN OPTIMAL SAMPLING RULE FOR NONINTRUSIVE POLYNOMIAL CHAOS EXPANSIONS OF EXPENSIVE MODELS

Michael Sinsbeck
Institute for Modeling Hydraulic and Environmental Systems (LS3)/SimTech, University of Stuttgart, Stuttgart, Germany
Wolfgang Nowak
Institute for Modeling Hydraulic and Environmental Systems (LS3)/SimTech, University of Stuttgart, Stuttgart, Germany

RESUMO

In this work we present the optimized stochastic collocation method (OSC). OSC is a new sampling rule that can be applied to polynomial chaos expansions (PCE) for uncertainty quantification. Given a model function, the goal of PCE is to find the polynomial from a given polynomial space that is closest to the model function with respect to the L2-norm induced by a given probability measure. Many PCE methods approximate the involved projection integral by discretization with a finite set of integration points. Our key idea is to choose these integration points through numerical optimization based on an operator norm derived from the discretized projection operator. OSC is a generalization of Gaussian quadrature: both methods coincide for one-dimensional integration and under appropriate problem settings in multidimensional problems. As opposed to many established integration rules, OSC does not generally lead to tensor grids in multidimensional problems. With OSC, the user can specify the number of integration points independently of the problem dimension and PCE expansion order. This allows one to reduce the number of model evaluations and still achieve a high accuracy. The input parameters can follow any kind of probability distribution, as long as the statistical moments up to a certain order are available. Even statistically dependent parameters can be handled in a straightforward and natural fashion. Moreover, OSC allows reusing integration points, if results from earlier model evaluations are available. Gauss-Kronrod and Stroud integration rules can be reproduced with OSC for the respective special cases.


Articles with similar content:

CLUSTERING-BASED COLLOCATION FOR UNCERTAINTY PROPAGATION WITH MULTIVARIATE DEPENDENT INPUTS
International Journal for Uncertainty Quantification, Vol.8, 2018, issue 1
D. T. Crommelin, Anne W. Eggels, J. A. S. Witteveen
A GRADIENT-BASED SAMPLING APPROACH FOR DIMENSION REDUCTION OF PARTIAL DIFFERENTIAL EQUATIONS WITH STOCHASTIC COEFFICIENTS
International Journal for Uncertainty Quantification, Vol.5, 2015, issue 1
Miroslav Stoyanov, Clayton G. Webster
ORTHOGONAL POLYNOMIAL EXPANSIONS FOR SOLVING RANDOM EIGENVALUE PROBLEMS
International Journal for Uncertainty Quantification, Vol.1, 2011, issue 2
Sharif Rahman, Vaibhav Yadav
HIGH DIMENSIONAL SENSITIVITY ANALYSIS USING SURROGATE MODELING AND HIGH DIMENSIONAL MODEL REPRESENTATION
International Journal for Uncertainty Quantification, Vol.5, 2015, issue 5
Edmondo Minisci, Marco Cisternino, Martin Kubicek
ADAPTIVE SELECTION OF SAMPLING POINTS FOR UNCERTAINTY QUANTIFICATION
International Journal for Uncertainty Quantification, Vol.7, 2017, issue 4
Casper Rutjes, Enrico Camporeale, Ashutosh Agnihotri