Inscrição na biblioteca: Guest
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes

Publicou 4 edições por ano

ISSN Imprimir: 1093-3611

ISSN On-line: 1940-4360

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.4 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.1 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00005 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.07 SJR: 0.198 SNIP: 0.48 CiteScore™:: 1.1 H-Index: 20

Indexed in

EFFECT OF IMPREGNATION BY SILVER NANOPARTICLES ON THE EFFICIENCY OF PLASMA-TREATED ZnO-BASED PHOTOCATALYSTS

Volume 24, Edição 1, 2020, pp. 21-45
DOI: 10.1615/HighTempMatProc.2020033434
Get accessGet access

RESUMO

Here we report, for the first time to our knowledge, the plasma modification of ZnO-based photocatalysts impregnated with silver nanoparticles (Ag NPs). Plasma-treated semiconductors have been recently proposed as effective catalysts for photodegradation of methyl orange (MO) in aqueous solution. Whereas effects of plasma treatment on activity of catalysts doped with a metal atom have been investigated, the effects of plasma treatment on the performance of catalysts doped with metal nanoparticles (NPs) have not yet been studied. In this study, ZnO microparticles were impregnated with Ag NPs. Impregnated catalysts were prepared by a wet impregnation method followed by plasma treatment. For this purpose, dielectric barrier discharge (DBD) plasma was applied. The photocatalytic degradation of methyl orange was investigated under ultraviolet (UV) light irradiation in the presence of aqueous suspension of Ag-NPs-impregnated ZnO. The catalysts were characterized by photoluminescence (PL) spectroscopy, scanning electron microscopy (SEM) combined with energy dispersive X-ray spectroscopy (EDX), infrared spectroscopy (IR), and UV-Vis spectroscopy. The presence of silver in ZnO was established by the inductively coupled plasma atomic emission spectrometry (ICP-AES) technique. A diminished catalytic activity was observed after impregnation with Ag NPs. A subsequent treatment by DBD plasma leads to the enhancement of catalysts' performance. The photocatalytic activity, expressed in terms of rate constants of photodegradation of methyl orange, was approximately 3 times higher for synthesized samples than that for untreated ZnO.

Referências
  1. Abdollahi, Y., Abdollah, A.H., Zainal Z., and Yusof, N.A., Synthesis and Characterization of Manganese-Doped ZnO Nanoparticles, Int. J. Basic Appl. Sci., vol. 11, no. 4, pp. 44-50, 2011.

  2. Ameta, R. and Ameta S.C., Photocatalysis. Principles and Application, Boca Raton, FL: CRC Press, 2017.

  3. Bagabas, A., Alshammari, A., Aboud, M.F.A., and Kosslick, K., Room-Temperature Synthesis of Zinc Oxide Nanoparticles in Different Media and Their Application in Cyanide Photodegradation, Nanoscale Res. Lett., vol. 8, no. 1, pp. 516:1-516:10, 2013.

  4. Bansal, A., Madhavi, S., Thatt, T., Tan, Y., and Lim, T.M., Effect of Silver on the Photocatalytic Degradation of Humic Acid, Catalysis Today, vol. 131, no. 10, pp. 250-254, 2008.

  5. Barroso-Bogeat, A., Alexandre-Franco, M., Fernandez-Gonzalez, C., and Gomez-Serrano, V., Particle Size Distribution and Morphological Changes in Activated Carbon-Metal Oxide Hybrid Catalysts Prepared under Different Heating Conditions, J. Microscopy, vol. 261, no. 3, pp. 227-242, 2016.

  6. Bogdanoff, P., Herrmann, I., Hilgendorff, M., Dorbandt, I., Fiechter, S., and Tributsch, H., Probing Structural Effects of Pyrolyzed CoTMPP-Based Electrocatalysts for Oxygen Reduction via New Preparation Strategies, J. New Mat. Electrochem. Syst., vol. 7, no. 2, pp. 85-92, 2004.

  7. Brueser, V., Savastenko, N., Schmuhl, A., Junge, H., Herrmann, I., Bogdanoff, P., and Schroeder, P., Plasma Modification of Catalysts for Cathode Reduction of Hydrogen Peroxide in Fuel Cells, Plasma Process. Polym, vol. 4, no. S1, pp. S94-S98, 2007.

  8. Burakov, V.S., Butsen, A.V., Bruser, V., Harnisch, F., Misakov, P.Yu., Nevar, E.A., Rosenbaum, M., Savastenko, N.A., and Tarasenko, N.V., Synthesis of Tungsten Carbide Nanopowder via Submerged Discharge Method, J. Nanoparticles Res., vol. 10, no. 5, pp. 881-886, 2008.

  9. Campet, G., Jakani, M., Doumerc, J.P., Claverie, J., and Hagenmuller, P., Photoconduction Mechanisms in Titanium and Rare Earth n-Type Semiconducting Electrodes with Pyrochlore and Perovskite Structures, Solid State Commun., vol. 42, no. 2, pp. 93-96, 1982.

  10. Cao, Y., Tan, H., Shi, T., Tang, T., and Li, J., Preparation of Ag-Doped TiO2 Nanoparticles for Photocatalytic Degradation of Acetamiprid in Water, J. Chem. Technol. Biotechnol, vol. 83, no. 4, pp. 546-552, 2008.

  11. Chaturvedi, S. and Dave, P.N., Environmental Application of Photocatalysis, Mater. Sci. Forum, vol. 734, pp. 273-294, 2013.

  12. Cheng, C.W., Sie, E.J., Liu, B., Huan, C.H.A., Sum, T.C., Sun, H.D., and Fan, H.J., Surface Plasma on Enhanced Band Edge Luminescence of ZnO Nanorods by Capping Au Nanoparticles, Appl. Phys. Lett., vol. 96, no. 7, pp. 071107-1-071107-3, 2010.

  13. Chiou, C.H. and Juang, R.S., Photocatalytic Degradation of Phenol in Aqueous Solutions by Pr-Doped TiO2 Nanoparticles, J. Hazard. Mater., vol. 149, no. 1, pp. 1-7, 2007.

  14. Chiu, Y.-H., Chang, T.-F.M., Chen, C.-Y., Sone, M., and Hsu, Y-J., Mechanistic Insights into Photodegradation of Organic Dyes Using Heterostructure Photocatalysts, Catalysts, vol. 9, no. 1, pp. 430(1)-430(32), 2019.

  15. Davydov, A., The Nature of Oxide Surface Centers, in Molecular Spectroscopy of Oxide Catalyst Surfaces, N.T. Sheppard, Ed., Weinheim, Germany: Wiley-VCH Verlag GmbH, pp. 27-179, 2003.

  16. Djurisic, A.B., Ng, A.M.C., and Chen, X.Y., ZnO Nanostructures for Optoelectronics: Material Properties and Device Applications, Prog. Quant. Electron., vol. 34, no. 4, pp. 191-259, 2010.

  17. Feng, Zh.C., Handbook of Zinc Oxide and Related Materials. Volume One. Materials, Boca Raton: CRC Press, 2013.

  18. Filatova, I.I., Savastenko, N.A., Lyushkevich, V.A., Chubrik , N.I., Goncharik, S.V, and Astreiko, V.M., Comparative Study of the Effect of RF and DBD Plasma Treatment on a Photocatalytic Activity of ZnO-Based Catalysts, High Temp. Mater. Processes, vol. 19, nos. 3-4, pp. 221-229, 2015.

  19. Foix, M., Guyon, C., Tatoulian, M., and Da Costa, P., Microwave Plasma Treatment for Catalyst Preparation: Application to Alumina Supported Silver Catalysts for SCR NOx by Ethanol, Modern Research in Catalysis, vol. 2, no. 3, pp. 68-82, 2013.

  20. Georgekutty, R., Seery, M.K., and Pillai, S.C., A Highly Efficient Ag-ZnO Photocatalyst: Synthesis, Properties, and Mechanism, J. Phys. Chem. C, vol. 112, no. 35, pp. 13563-13570, 2008.

  21. Guidelli, E.J., Baffa, O., and Clarke, D.R., Enhanced UV Emission from Silver/ZnO and Gold/ZnO Core-Shell Nanoparticles: Photoluminescence, Radioluminescence, and Optically Stimulated Luminescence, Sci. Rep., vol. 5, pp. 14004-1-11, 2015. DOI: 10.1038/srep14004.

  22. Haber, J., Block, J.H., and Delmon, B., Manual of Methods and Procedures for Catalyst Characterization, Pure Appl. Chem, vol. 67, nos. 8-9, pp. 1257-1306, 1995.

  23. Harnisch, F., Savastenko, N., Zhao, F., Steffen, H., Brueser, V., and Schroeder, U., Comparative Study on the Performance of Pyrolyzed and Plasma-Treated Iron (II) Phthalocyanine-Based Catalysts for Oxygen Reduction in pH Neutral Electrolyte Solutions, J. Power Sources, vol. 193, no. 1, pp. 86-92, 2009.

  24. He, H.Y., Photo-Catalytic Degradation of Methyl Orange in Water on CuSB-Cu2S, Int. J. Environ. Res., vol. 2, no. 1, pp. 23-26, 2008.

  25. Herrmann, I., Bruser, V, Fiechter, S., Kersten, H., and Bogganoff, P., Electrocatalysts for Oxygen Reduction Prepared by Plasma Treatment of Carbon-Supported Cobalt Tetramethoxyphenylporphyrin, J. Electrochem. Soc., vol. 152, no. 11, pp. A2179-A2185, 2005.

  26. Herrmann, I., Kramm, U.I., Fiechter, S., Bruser, V., Kersten, H., and Bogganoff, P., Comparative Study of the Carbonization of CoTMPP by Low Temperature Plasma and Heat Treatment, Plasma Proc. Polym., vol. 7, no. 6, pp. 515-526, 2010.

  27. Hirakava, T. and Kamat, P.V., Charge Separation and Catalytic Activity of Ag@TiO2 Core-Shell Composite Clusters under UV-Irradiation, J. Am. Chem. Soc., vol. 127, no. 11, pp. 3928-3934, 2005.

  28. Hosseini, S.M., Abdolhosseini Sarsari, I., Kameli, P., and Salamati, H., Effect of Ag Doping on Structural, Optical, and Photocatalytic Properties of ZnO Nanoparticles, J. Alloys Compd., vol. 640, pp. 408-415, 2015.

  29. Hosseini, S.A. and Babaei, S., Graphene Oxide/Zinc Oxide (GO/ZnO) Nanocomposite as a Superior Photo-catalysts for Degradation of Methylene Blue (MB)-Process Modeling by Response Surface Methodology (RSM), J. Braz. Chem. Soc, vol. 28, no. 2, pp. 299-307, 2017.

  30. Jin, R., Wu, Z., Liu, Y, Jiang, B., and Wang, H., Photocatalytic Reduction of NO with NH3 Using SiDoped TiO2 Prepared by Hydrothermal Method, J. Hazard. Mater, vol. 161, no. 1, pp. 42-48, 2009.

  31. Kang, H.S., Ahn, B.D., Kim, J.H., Kim, G.H., Lim, S.H., Chang, H.W., and Lee, S.Y., Structural, Electrical, and Optical Properties ofp-Type ZnO Thin Films with Ag Dopant, Appl. Phys. Lett., vol. 88, no. 20, p. 2021108, 2006. DOI: 10.1063/1.2203952.

  32. Kansal, S.K., Kaur, N., and Singh, S., Photocatalytic Degradation of Two Commercial Reactive Dyes in Aqueous Phase Using Nanophotocatalysts, Nanoscale Res. Lett., vol. 14, no. 7, pp. 709-716, 2009.

  33. Kaur, G., Mitra, A., and Yadav, K.L., Growth and Properties of Pulsed Laser Deposited Al-Doped ZnO Thin Film, Adv. Mater. Lett., vol. 6, no. 1, pp. 73-79, 2015.

  34. Koferstein, R., Jager, L., and Ebbinghaus, S.G., Magnetic and Optical Investigations on LaFeO3 Powders with Different Particle Sizes and Corresponding Ceramics, Solid State Ionics, vols. 249-250, no. 1, pp. 1-5, 2013.

  35. Kolodziejczak-Radzimska, A., Markiewicz, E., and Jesionowski, T., Structural Characterization of ZnO Particles Obtained by the Emulsion Precipitation Method, J. Nanomater., vol. 2012, pp. 1-9, 2012. DOI:10.1155/2012/656353.

  36. Lanje, A.S., Sharma, S.J., Ningthoujam, R.S., Ahn, J.-S., and Pode, R.B., Low Temperature Dielectric Studies of Zinc Oxide (ZnO) Nanoparticles Prepared by Precipitation Method, Adv. Powder Technol., vol. 24, no. 1, pp. 331-335, 2013.

  37. Lee, K.M., Lai, C.W., Ngai, K.S., and Juan, J.C., Recent Developments of Zinc Oxide Based Photocatalyst in Water-Treatment Technology: A Review, Water Res., vol. 88, no. 1, pp. 428-448, 2016.

  38. Lee, P.C. and Meisel, D., Adsorption and Surface Enhanced Raman of Dyes on Silver and Gold Solutions, J. Phys. Chem., vol. 86, no. 17, pp. 3391-3395, 1982.

  39. Li, Y., Uchino, R., Tokizono, T., Paulsen, A., Zhong, M., Shuzo, M., Yamada, I., and Delaunay, J.-J., Effect of Hydrogen Plasma Treatment on the Luminescence and Photoconductive Properties of ZnO Nanowires, Mater. Res. Soc. Symp. Proc., vol. 1206, pp. M13-03P1-P6, 2010.

  40. Lin, J.M., Lin, H.Y., Cheng, C.L., and Chen, Y.F., Giant Enhancement of Bandgap Emission of ZnO Nanorods by Platinum Nanoparticles, Nanotechnology, vol. 17, no. 17, pp. 4391-4394, 2006.

  41. Liu, C.-J., Zou, J., Yu, K., Cheng, D., Han, Y., Zhan, J., Ratanatawanate, C., and Jang, Ben W.-L., Plasma Application for More Environmentally Friendly Catalyst Preparation, Pure Appl. Chem., vol. 78, no. 6, pp. 1227-1238, 2006.

  42. Liu, C.-J., Li, M., Wang, J., Zhou, X., Guo, Q., Yan, J., and Li, Y., Plasma Methods for Preparing Green Catalysts: Current Status and Perspective, Chin. J. Catalysis, vol. 37, no. 3, pp. 340-348, 2016.

  43. Liu, C.-J., Vissokov, G.P., and Jang, Ben W.-L., Catalyst Preparation Using Plasma Technologies, Catalysis Today, vol. 72, nos. 3-4, pp. 173-184, 2002.

  44. Liu, X., Wu, X., Cao, H., and Chang, R.P.H., Growth Mechanism and Properties of ZnO Nanorods Syn-thesized by Plasma-Enhanced Chemical Vapor Deposition, J. Appl. Phys., vol. 95, no. 6, pp. 3141-3147, 2004.

  45. Ma, Y.F., Zhang, J.L., Tian, B.Z., Chen, F., and Wang, L.Z., Synthesis and Characterization of Thermally Stable Sm,N Co-Doped TiO2 with Highly Visible Light Activity, J. Hazard. Mater., vol. 182, nos. 1-3, pp. 386-393, 2010.

  46. Maskevich, A.A., Kurhuzenkau, S.A., and Lickevich, A.Yu., Fluorescence Spectral Analysis of Thioflavin T-y-Cyclodextrin Interaction, J. Appl. Spectrosc., vol. 80, no. 1, pp. 36-42, 2013.

  47. Maskevich, A.A., Stsiapura, V.I., and Balinski, P.T., Analysis of Fluorescence Decay Kinetics of Thioflavin T by a Maximum Entropy Method, J. Appl. Spectrosc., vol. 77, no. 2, pp. 194-201, 2010.

  48. McLean, T.P., The Absorption Edge Spectrum of Semiconductors, in Progress in Semiconductors, A.F. Gibson, F.A. Kroger, and R.E. Burgess, Eds., London: Heywood and Company, pp. 53-102, 1960.

  49. Moore, J.C., Louder, R., and Thompson, C.V., Photocatalytic Activity and Stability of Porous Polycrystalline ZnO Thin-Films Grown via a Two-Step Thermal Oxidation Process, Coatings, vol. 4, no. 3, pp. 651-669, 2014.

  50. Munnik, P., de Jongh, P.E., and de Jong, K.P., Recent Developments in the Synthesis of Sipported Catalysts, Chem. Rev., vol. 115, no. 14, pp. 6687-6718, 2015.

  51. Nagaraju, G., Udayabhanu, Shivaraj, Prashanth, S.A., Shastri, M., Yathish, K.V., Anupama, C., and Rangappa, D., Electrochemical Heavy Metal Detection, Photocatalytic, Photoluminescence, Biodiesel Production and Antibacterial Activities of Ag-ZnO Nanomaterial, Mater. Res. Bull., vol. 94, pp. 54-63, 2017.

  52. Noei, H., Qiu, H., Wang, Y., Loffler, E., Woll, C., and Muhler, M., The Identification of Hydroxyl Groups on ZnO Nanoparticles by Infrared Spectroscopy, Phys. Chem. Chem. Phys, vol. 10, no. 47, pp. 7092-7097, 2008.

  53. Park, S., An, S., Mun, Y, and Lee, C., Enhancement Luminescence of Ag-Decorated ZnO Nanoroads, J. Mater. Sci.: Mater. Electron., vol. 24, no. 12, pp. 4906-4912, 2013. DOI: 10.1007/s10854-013-1496-4.

  54. Poudyal, N., Han, G., Qiu, Z., Elkins, K., Mohapatra, J., Gandha, K., Timmons, R.B., and Liu, J.P., Cleaning of Magnetic Nanoparticle Surfaces via Cold Plasmas Treatments, AIP Adv., vol. 7, no. 5, pp. 056233-1-056233-7, 2017. DOI:10.1063/1.4978635.

  55. Raj, K.J.A., Ramaswamy, A.V., and Viswanathan, B., Surface Area, Pore Size, and Particle Size Engineering of Titania with Seeding Technique and Phosphate Modification, J. Phys. Chem. C, vol. 113, no. 31, pp. 13750-13757, 2009.

  56. Rivas, L., Sanchez-Cortes, S., Garcia-Ramos, J.V., and Morcillo, G., Mixed Silver/Gold Colloids: A Study of Their Formation, Morphology and Surface Enhanced Raman Activity, Langmuir, vol. 16, no. 25, pp. 9722-9728, 2000.

  57. Sakthivel, S., Shankar, M.V., Palanichamy, M., Arabindoo, B., Bahnemann, D.W., and Murugesan, V., Enhancement of Photocatalytic Activity by Metal Deposition: Characterization and Photonic Efficiency of Pt, Au, and Pd Deposited on TiO2 Catalyst, Water Res., vol. 38, no. 13, pp. 3001-3008, 2004.

  58. Sans, J.A., Segura, A., Mollar, M., and Mari, B., Optical Properties of Thin Films of ZnO Prepared by Pulsed Laser Deposition, Thin Solid Films, vols. 453-454, no. 3, pp. 251-255, 2004.

  59. Sarteep, Z., Pirbazari, E., and Aroon, M.A., Silver-Doped TiO2 Nanoparticles: Preparation, Characterization and Efficient Degradation of 2,4-dichlorophenol under Visible Light, J. Water Environ. Nanotechnol., vol. 1, no. 2, pp. 135-144, 2016.

  60. Savastenko, N.A., Brueser, V., Brueser, M., Anklam, K., Kutchera S., Steffen., H., and Schmuhl, A., Enhanced Electrocatalytic Activity of CoTMPP-Based Catalysts for PEMFCs by Plasma Treatment, J. Power Sources, vol. 165, no. 1, pp. 24-33, 2007.

  61. Savastenko, N., Volpp, H.-R., Gerlach, O., and Strehlau, W., Synthesis of Nanostructured Lean-NOX Catalysts by Direct Laser Deposition of Monometallic Pt-, Rh-, and Bimetallic PtRh-Nanoparticles on SiO2 Support, J. Nanopart. Res., vol. 10, no. 2, pp. 277-287, 2008.

  62. Savastenko, N.A., and Brueser V., Plasma Modification of Self-Assembled Structures of CoTMPP Molecules, Appl. Surf. Sci., vol. 257, no. 8, pp. 3480-3488, 2011a.

  63. Savastenko, N.A., Anklam, K., Quade, A., Brueser, M., Schmuhl, A., and Brueser, V., Comparative Study of Plasma-Treated Non-Precious Catalysts for Oxygen and Hydrogen Peroxide Reduction Reactions, Energy Environ. Sci., vol. 4, no. 9, pp. 3461-3472, 2011b.

  64. Savastenko, N.A., Muller, S., Anklam, K., Bruser, M., Quade, A., Walter, C., and Bruser, V., Effect of Plasma Treatment on the Properties of Fe-Based Electrocatalysts, Surf. Coat. Technol., vol. 205, no. 25, pp. S439-S442, 2011c.

  65. Savastenko, N.A., Filatova, I.I., Lyushkevich, V.A., Chubrik, N.I., Gabdullin, M.T., Ramazanov, T.S., Abdullin, Kh.A., and Kalkozova, V.A., Enhancement of ZnO-Based Photocatalyst Activity by RF Discharge-Plasma Treatment, J. Appl. Spectrosc., vol. 83, no. 5, pp. 757-763, 2016a.

  66. Savastenko, N.A., Filatova, I.I., Lyushkevich, V.A., Chubrik, N.I., Gabdullin, M.T., Ramazanov, T.S., Abdullin, Kh.A., and Kalkosova, V.A., Optical and Structural Properties of ZnO-Based Photocatalysts, Proc. Nat. Acad. Sci. Belarus, Phys. Math. Ser., vol. 2, pp. 57-67, 2016b.

  67. Savastenko, N., Filatova, I., Lyushkevich, V., Chubrik, N., Goncharik, S., and Maskevich, S., Effect of Dielectric Barrier Discharge Plasma Treatment on the Photoluminescence and Photocatalytic Properties of ZnO Powder, High Temp. Mater. Processes, vol. 21, no. 2, pp. 127-142, 2017.

  68. Schevciw, O. and White, W.B., The Optical Absorption Edge of Rare Earth Sesquisulfides and Alkaline Earth-Rare Earth Sulfides, Mat. Res. Bull., vol. 18, no. 9, pp. 1059-1068, 1983.

  69. Schwarz, J.A., Contescu, C., and Contescu, A., Methods for Preparation of Catalytic Materials, Chem. Rev, vol. 95, no. 3, pp. 477-510, 1995.

  70. Shalish, I., Temkin, H., and Narayanamurti, V., Size-Dependent Surface Luminescence in ZnO Nanow- ires, Phys. Rev. B, vol. 69, pp. 245401-1-245401-4, 2014.

  71. Sharma, R.K., Patel, S., and Pargaien, K.C., Synthesis, Characterization and Properties of Mn-Doped ZnO Nanocrystals, Adv. Nat. Sci.: Nanosci. Nanotechnol., vol. 3, pp. 035005:1-5, 2012.

  72. Shi, W., Chen, Q., Xu, Y., Wu, D., and Huo, C.-F., Investigation of the Silicon Concentration Effect on Si-Doped Anatase TiO2 by First-Principles Calculation, J. Solid State Chem., vol. 184, no. 8, pp. 1983-1988, 2011.

  73. Siham, A.-O. and Salman, S.R., Photocatalytic Degradation of Methyl Orange as a Model Compound, J. Photochem. Photobiol. A: Chem., vol. 148, nos. 1-3, pp. 161-168, 2002.

  74. Stathatos, E., Petrova, T., and Lianos, P., Study of the Efficiency of Visible-Light Photocatalytic Degradation of Basic Blue Adsorbed on Pure and Doped Mesoporous Titania Films, Langmuir, vol. 17, no. 16, pp. 5025-5030, 2001.

  75. Su, Y., Yang, Y., Zhang, H., Wu, Y.Z., Jiang, Y., Fukata, N., Bando, N., and Wang, Z.Y., Enhanced Photodegradation of Methyl Orange with TiO2 Nanoparticles Using a Triboelectric Nanogenerator, Nanotechnology, vol. 24, no. 29, pp. 295401-1-295401-6, 2013.

  76. Subramanian, V., Wolf, E.E., and Kamat, P.V., Catalysis with TiO2/Gold Nanocomposites. Effect of Metal Particle Size on the Fermi Level Equilibration, J. Am. Chem. Soc., vol. 126, no 15, pp. 4943-4950, 2004.

  77. Sundar, S.A. and John, N.J., Synthesis and Studies on Structural and Optical Properties of Zinc Oxide and Manganese-Doped Zinc Oxide Nanoparticles, Nanosystems: Phys., Chem., Math., vol. 7, no. 6, pp. 1024-1030, 2016. DOI: 10.17586/2220805420167610241030.

  78. Suwanchawalit, C. and Wongnawa, S., Influence of Calcination on the Microstructures and Photocatalytic Activity of Potassium Oxalate-Doped TiO2 Powders, Appl. Catalysis A, vol. 338, nos. 1-2, pp. 87-99, 2008.

  79. Tan, Y.N., Wong, C.L., and Mohamed, A.R., An Overview on the Photocatalytic Activity of Nano-Doped-TiO2 in the Degradation of Organic Pollutants, ISRN Materials Sci., vol. 2011, article ID 261219, 18 p., 2011. DOI: 10.5402/2011/261219.

  80. Thomann, A.-L., Rozenbaum, J.P., Brault, P., Andreazza, C., Andreazza, P., Rousseau, B., Estrade-Szwarckopf, H., Berthet, A., Bertolini, J.C., Cadete Santos Aires, F.J., Monnet, F., Mirodatos, C., Charles, C., and Boswell, R., Plasma Synthesis of Catalytic Thin Films, Pure Appl. Chem., vol. 74, no. 3, pp. 471-474, 2002.

  81. Tyczkowski, J., Cold Plasma Produced Catalytic Materials, in Plasma Science and Technology-Progress in Physical States and Chemical Reactions, T. Mino, Ed., Intech: Open Access Peer-Reviewed, pp. 25-66, 2016. DOI: 10.5772/61832.

  82. Umebayashi, T., Yamaki, T., Itoh, H., and Asai, K., Analysis of Electronic Structures of 3D Transition Metal-Doped TiO2 Based on Band Calculations, J. Phys. Chem. Solids, vol. 63, no. 10, pp. 1909-1920, 2002.

  83. Wagner, H.-E., Brandenburg, R., Kozlov, K.V., Sonnenfeld, A., Michel, P., and Behnke, J.F., The Barrier Discharge: Basic Properties and Applications to Surface Treatment, Vacuum, vol. 71, no. 3, pp. 417-436, 2003.

  84. Wang, R., Xina, J. H., Yang, Y., Liu, H., Xu, L., and Hu, J., The Characteristics and Photocatalytic Activities of Silver-Doped ZnO Nanocrystallites, Appl. Surf. Sci., vol. 227, nos. 1-4, pp. 312-317, 2004.

  85. Witvrouwen, T., Paulussen, S., and Selt, B., The Use of Non-Equilibrium Plasmas for the Synthesis of Heterogeneous Catalysts, Plasma Process. Polym., vol. 9, no. 8, pp. 750-760, 2012.

  86. Zeng, H., Cai, W., Hu, J., Duan, G., Liu, P., and Li, Y., Violet Photoluminescence from Shell Layer of Zn/ZnO Core-Shell Nanoparticles Induced by Laser Ablation, Appl. Phys. Lett., vol. 88, no. 17, pp. 171910-1-171910-3, 2006.

  87. Zhou, X.-T., Ji, H.-B., and Huang, X.-J., Photocatalytic Degradation of Methyl Orange over Metallopor-phyrins Supported on TiO2 Degussa P25, Molecules, vol. 17, no. 2, pp. 1149-1158, 2012.

  88. Zou, J.J., Liu, C.J., and Zhang, Y.P., Control of the Metal-Support Interface of NiO-Loaded Photocatalysts via Cold Plasma Treatment, Langmuir, vol. 22, no. 5, pp. 2334-2339, 2006.

  89. Zou, J.J., Liu, C.J., Yu, K.L., Cheng, D.G., Zhang, Y.P., He, F., Du, H.Y., and Cui, L., Highly Efficient Pt/TiO2 Photocatalyst Prepared by Plasma-Enhanced Impregnation Method, Chem. Phys. Lett., vol. 400, nos. 4-6, pp. 520-523, 2004.

CITADO POR
  1. Tomić Milena, Claros Martha, Gràcia Isabel, Figueras Eduard, Cané Carles, Vallejos Stella, ZnO Structures with Surface Nanoscale Interfaces Formed by Au, Fe2O3, or Cu2O Modifier Nanoparticles: Characterization and Gas Sensing Properties, Sensors, 21, 13, 2021. Crossref

1333 Visualizações do artigo 24 downloads de artigos Métricas
1333 VISUALIZAÇÕES 24 TRANSFERÊNCIAS 1 Crossref CITAÇÕES Google
Scholar
CITAÇÕES

Artigos com conteúdo semelhante:

EFFECT OF DIELECTRIC BARRIER DISCHARGE PLASMA TREATMENT ON THE PHOTOLUMINESCENCE AND PHOTOCATALYTIC PROPERTIES OF ZnO POWDER High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.21, 2017, issue 2
S.V. Goncharik, I. I. Filatova, N. I. Chubrik, Natalie A. Savastenko, Veronika A. Lyushkevich, S. A. Maskevich
EFFECT OF DBD-PLASMA TREATMENT ON ACTIVITY OF ZnO-BASED PHOTOCATALYSTS IMPREGNATED WITH SILVER NANOPARTICLES High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.26, 2022, issue 2
A. A. Shcherbovich, I. I. Filatova, Natalie A. Savastenko, Veronika A. Lyushkevich, S. A. Maskevich
A COMPARATIVE STUDY OF PHOTOCATALYTIC ACTIVITY OF ZnO-BASED PHOTOCATALYSTS TREATED BY DIELECTRIC BARRIER DISCHARGE PLASMA High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.24, 2020, issue 4
I. I. Filatova, Natalie A. Savastenko, Veronika A. Lyushkevich, S. A. Maskevich
COMPARATIVE STUDY OF THE EFFECT OF RF AND DBD PLASMA TREATMENT ON A PHOTOCATALYTIC ACTIVITY OF ZnO-BASED CATALYSTS High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.19, 2015, issue 3-4
S.V. Goncharik, I. I. Filatova, N. I. Chubrik, V. M. Astreiko, Veronika A. Lyushkevich, N. A. Savastenko
PLASMA-ASSISTED SYNTHESIS OF POLYMER-CAPPED DYE-SENSITIZED TiO2-BASED PHOTOCATALYSTS FOR METHYL ORANGE AND CAFFEINE PHOTODEGRADATION High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.25, 2021, issue 3
V. R. Plakhodzka, V. Brüser, A. A. Shcherbovich, Natalie A. Savastenko, A. V. Miadzvetski, S. A. Maskevich
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa Políticas de preços e assinaturas Begell House Contato Language English 中文 Русский Português German French Spain