Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes
SJR: 0.19 SNIP: 0.341 CiteScore™: 0.43

ISSN Imprimir: 1093-3611
ISSN On-line: 1940-4360

High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes

DOI: 10.1615/HighTempMatProc.2019030485
pages 181-194


Raman S. Kudaktsin
A.V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 15 P. Brovka Str., Minsk, 220072, Belarus
Valiantsin M. Astashynski
A.V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 15 P. Brovka Str., Minsk, 220072, Belarus; National Research Nuclear University "MEPhI" (Moscow Engineering Physics Institute), 31 Kashirskoe Highway, Moscow, 115409, Russia
A. M. Kuzmitski
A. V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 15, P. Brovki Str, Minsk 220072, Belarus


Use of compression plasma flows opens wide possibilities for modification of metals and semiconductors by creating deep uniformly doped surface layers with elevated service characteristics. In the present work, evaporation and hydrodynamic effects in metals (iron, copper, aluminum) under the action of compression plasma flows are studied theoretically and experimentally. In experimental onditions, plasma flows were generated by employing a magnetoplasma compressor of compact geometry with storage battery energy of 15 kJ. The lifetime of stable plasma flow was 100 µs. It was found that at a power density of 5−12 GW/m2 intense ablation of material from the metal surface occurs. Modeling of heat transfer processes on the basis of the Stefan problem with account for melting and evaporation showed that the observable ablation of material cannot be explained only by evaporation. It was found experimentally that hydrodynamic removal of metal in a liquid state under high plasma flow pressure (10−30 atm) makes a substantial contribution to the total ablation. The proportion of hydrodynamic removal grows with increase of the plasma flow power density.


  1. Aktaev, N.E. and Remnev, G.E., Modeling of Carbon Penetration into Silicon Structure under the Action of Pulsed High-Intensity Ion Beam, Surf. Coat. Technol., vol. 306, part A, pp. 54-57, 2016.

  2. Amati, M., Gregoratti, L., Sezen, H., Grace, A., Milosavljevic, M., and Homewood, K.P., Compositional and Structural Studies of Ion-Beam Modified AlN/TiN Multilayers, Appl. Surf. Sci., vol. 411, pp. 431-436, 2017.

  3. Anishchik, V.M., Uglov, V.V., Astashynski, V.V., Astashynski, V.M., Ananin, S.I., Kostyukevich, E.A., Kuzmitski, A.M., Kvasov, N.T., Danilyuk, A.L., and Rumianceva, I.N., Compressive Plasma Flows Interaction with Steel Surface: Structure and Mechanical Properties of Modified Layer, Vacuum, vol. 70, nos. 2-3, pp. 269-274, 2003.

  4. Aono, Y, Hirata, A., and Tokura, H., Non-Textured Laser Modification of Silica Glass Surface: Wettability Control and Flow Channel Formation, Appl. Surf. Sci., vol. 371, pp. 530-537, 2016.

  5. Astashynski, VM., Ananin, S.I., Askerko, V.V., Kostyukevich, E.A., Kuzmitski, A.M., Uglov, V.V., An- ishchik, V.M., Astashynski, V.V., Kvasov, N.T., and Danilyuk, L.A., Materials Surface Modification using Quasi-Stationary Plasma Accelerators, Surf. Coat. Technol., vols. 180-181C, pp. 392-395, 2004.

  6. Astashynski, V.M., Ananin, S.I., Emelyanenko, A.S., Kostyukevich, E.A., Kuzmitzky, A.M., Zhvavy, S.P., and Uglov, V.V., Bulk Periodic Structures Formation on Monocrystalline Silicon Surface under the Action of Compression Plasma Flows, Appl. Surf. Sci., vol. 253, no. 4, pp. 1866-1872, 2006.

  7. Astashynski, V.M., Leyvi, A.Ya., Uglov, V.V., Cherenda, N.N., and Yalovets, A.P., Formation of Relief on a Metallic Target Surface under the Action of Compression Plasma Flows, J. Surf. Invest. X-ray Synchrotron Neutron Techniques, vol. 8, no. 3, pp. 519-523, 2014.

  8. Astashynski, V.M. and Min'ko, L.Y, Physical Processes in Quasistationary Plasma Accelerators with Ion Current Transfer, in The Physics of Ionized Gases, N. Konjevic, M. Cuk, and S. Durovic Eds., Belgrade: University of Belgrade, pp. 285-303, 1999.

  9. Cherenda, N.N., Smilgin, A.A., Uglov, V.V., Astashynski, V.M., Kuzmitski, A.M., and Remnev, G.E., Cleaning of Steel Surface from Scale by Compression Plasma Flows, Surf. Coat. Technol., vol. 255, pp. 79-83, 2014.

  10. Chernov, V.V., Ivanov, O.A., Isaev, V.A., Radishev, D.B., Vikharev, A.L., and Kozlov, A.V., High-Current Electron Emission of Thin Diamond Films Deposited on Molybdenum Cathodes, Diamond Related Mater, vol. 37, pp. 87-91, 2013.

  11. Choi, W.K. and Park, D.H., Polyimide Surface Modification by Linear Stationary Plasma Thruster, Surf. Coat. Technol., vol. 203, nos. 17-18, pp. 2739-2742, 2009.

  12. Earl, C., Castrejon-Pita, J.R., Hilton, P.A., and O'Neill, W., The Dynamics of Laser Surface Modification, J. Manufact. Process., vol. 21, pp. 214-223, 2016.

  13. Gao, Y, Influence of Pulsed Electron Beams Treatment on Microstructure and Properties of TA15 Titanium Alloy, Appl. Surf. Sci., vol. 264, p. 633-655, 2013.

  14. Gahanty, S., Surface Modification of Al-Si Alloy by Excimer Laser Pulse Processing, Mater. Chem. Phys, vol. 173, pp. 192-199, 2016.

  15. Hao, S., Wang, H., and Zhao, L., Surface Modification of 40CrNiMo7 Steel with High Current Pulsed Electron Beam Treatment, Nuclear Instruments Methods Phys. Res., Sect. B: Beam Interactions Mater. Atoms, vol. 368, pp. 81-85, 2016.

  16. Huang, J., Wang, L., Sun, H., Wang, H., Gao, M., Cheng, W., and Chen, Z., Effects of RTA Temperatures on Conductivity and Micro-Structures of Boron-Doped Silicon Nanocrystals in Si-Rich Oxide Thin Films, Mater. Sci. Semicond. Process., vol. 47, pp. 7-11, 2016.

  17. Jeong, J.W., Huh, J.W., Lee, J.I., and Chu, H.Y., Effects of Thermal Annealing on the Efficiency of Bulk- Heterojunction Organic Photovoltaic Devices, Current Appl. Phys., vol. 10, no. 3, pp. S520-S524, 2010.

  18. Kuraica, M.M., Astashynski, V.M., Dojcinovic, I., and Puric, J., Modification of Solid Surface by a Compression Plasma Flow, in Physics of Laser Crystals, J.-C. Krupa and N. Kulagin, Eds., New York: Kluwer Academic Publishers, pp. 245-255, 2003.

  19. Makwana, D. and Bhingole, P.P., Electrochemical and Plasma Surface Modification of Magnesium and its Alloy: Review, Mater. Today: Proc., vol. 5, no. 9, part 3, pp. 18260-18267, 2018.

  20. Mikoushkin, V.M., Bryzgalov, V.V., Makarevskaya, E.A., Solonitsyna, A.P., and Marchenko, D.E., Modification of the GaAs Native Oxide Surface Layer into the Layer of the Ga2O3 Dielectric by an Ar<sup>&#43;</sup> ion Beam, Surf. Coat. Technol., vol. 344, pp. 149-153, 2018.

  21. Nikolov, K., Bunk, K., Jung, A., Gerlach, J.W., Kaestner, P., and Klages, C.-P., Combined Plasma Surface Modification of Austenitic Stainless Steel for Bipolar Plates, Surf. Coat. Technol., vol. 328, pp. 142-151, 2017.

  22. Proskurovsky, D.I., Rotshtein, V.P., Ozur, G.E., Ivanov, Yu.F., and Markov, A.B., Physical Foundations for Surface Treatment of Materials with Low Energy, High Current Electron Beams, Surf. Coat. Technol., vol. 125, nos. 1-3, pp. 49-56, 2000.

  23. Sari, A.H., Astashynski, V.M., and Uglov, V.V., Effect of Compressed Plasma Flow on Tantalum-Titanium Thin Layer Deposited on Silicon Substrate, Int. J. Mater. Sci. Appl., vol. 3, no. 3, pp. 92-99, 2014.

  24. Smithels, C.J., Smithels Metals Reference Book, 8th ed., Butterworth-Heinemann, 2004.

  25. Sun, D.L., Hong, R.Y, Wang, F., Liu, J.Y, and Rajesh Kumar, M., Synthesis and Modification of Carbon Nanomaterials via AC Arc and Dielectric Barrier Discharge Plasma, Chem. Eng. J., vol. 283, pp. 9-20, 2016.

  26. Tao, X., Han, Y, Sun, C., Huang, L., and Xu, D., Plasma Modification of NiAlCe-LDH as Improved Photocatalyst for Organic Dye Wastewater Degradation, Appl. Clay Sci., vol. 172, pp. 75-79, 2019.

  27. Uglov, V.V., Cherenda, N.N., Anishchik, V.M., Stalmashonak, A.K., Kononov, A.G., Petukhov, Yu.A., Astashinski, V.M., and Kuzmitski, A.M., Surface Alloying of Metals using a Quasi-Stationary Plasma Accelerator, High Temp. Mater. Process., vol. 11, no. 3, pp. 383-391, 2007.

  28. Uglov, V.V., Kvasov, N.T., Petukhov, Y.A., Astashinskii, V.M., and Kuz'mitskii, A.M., Phase Formation and Structural Changes in the Chromium-Silicon System Exposed to Compressed Plasma Fluxes, J. Surf. Invest. X-Ray Synchrotron Neutron Techniques, vol. 4, no. 2, pp. 338-342, 2010.

  29. Uglov, V.V., Shymanski, VI., Cherenda, N.N., Lyushkevich, V.A., Astashinskii, V.M., Astashins- kaya, M.V., and Reva, O.V., Formation of Titanium Nickelide Surface Alloy under Impact of Compressive Plasma Flows on the Nickel-Titanium System, Inorg. Mater.: Appl. Res., vol. 4, no. 5, pp. 475-480, 2013.

  30. Utlu, G. and Artunc, N., The Effects of Grain Boundary Scattering on Electrical Resistivity of Ag/NiSi Silicide Films Formed on Silicon Substrate at 500oC by RTA, Appl. Surf. Sci., vol. 310, pp. 248-256, 2013.

  31. Zagulyaev, D., Konovalov, S., Gromov, V, Glezer, A., Ivanov, Y., and Sundeev, R., Structure and Properties Changes of Al-Si Alloy Treated by Pulsed Electron Beam, Mater. Lett., vol. 229, pp. 377-380, 2018.

  32. Zhang, Q.X., Ge, Y.P., Gu, X.Q., Peng, F., and Luo, M., The Effects of Rapid Thermal Annealing and Microwave Annealing on the Electrical Properties of ZrO2 Metal-Insulator-Metal Capacitors, Optik, vol. 179, pp. 1057-1062, 2019.

Articles with similar content:

High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.18, 2014, issue 4
S. P. Zhvavy, A. I. Urbanovich
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.17, 2013, issue 1
Valiantsin M. Astashynski, Siarhei I. Ananin, Nikolai N. Cherenda, E. A. Kostyukevich, A. M. Kuzmitski, A. H. Sari, Vladimir V. Uglov
Experimental Investigation of Heat Transfer in a Cylindrical Tube Heated on One Side by Highly Dense Energy Beams
Heat Transfer Research, Vol.32, 2001, issue 1-3
V. K. Naumov, Aleksey V. Dedov, Alexander N. Varava, Alexander T. Komov, S. A. Shcheglov
Progress in Plasma Processing of Materials, 1999, Vol.1, 1999, issue
P. V. Porytskyy, G. S. Kyrychenko , A. D. Shevelev , V. Ya. Porytskyy
Telecommunications and Radio Engineering, Vol.75, 2016, issue 15
A. M. Gokov