Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes
SJR: 0.19 SNIP: 0.341 CiteScore™: 0.43

ISSN Imprimir: 1093-3611
ISSN On-line: 1940-4360

High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes

DOI: 10.1615/HighTempMatProc.2016017333
pages 59-83

MATHEMATICAL MODELING OF SELF-PROPAGATING HIGH-TEMPERATURE SYNTHESIS IN FORMATION OF A WEAR-RESISTANT COATING BY PULSE PLASMA PROCESSING OF A COMPOSITE PLASTER INVOLVING SHS REAGENTS

G. F. Gromyko
Institute of Mathematics, National Academy of Sciences of Belarus, 11 Surganov Str., Minsk, 220072, Belarus
N. P. Matsuka
Institute of Mathematics, National Academy of Sciences of Belarus, Minsk, Belarus
A. Ph. Ilyuschenko
Powder Metallurgy Institute, National Academy of Sciences of Belarus, 41 Platonov Str., Minsk, 220005, Belarus
A. I. Shevtsov
Powder Metallurgy Institute, National Academy of Sciences of Belarus, 41 Platonov Str., Minsk, 220005, Belarus
Valiantsin M. Astashynski
A.V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 15 P. Brovka Str., Minsk, 220072, Belarus; National Research Nuclear University "MEPhI" (Moscow Engineering Physics Institute), 31 Kashirskoe Highway, Moscow, 115409, Russia
Kiastas V. Buikus
Belarusian National Technical University, 65 Nezavisimost Ave., Minsk, 220013, Belarus

RESUMO

A mathematical model of the thermal processes of self-propagating high-temperature synthesis in the formation of wear-resistant coatings by pulse plasma processing of a composite plaster of a charge containing SHS reagents has been developed. The boundary-value problem is solved by a finite volume method in a two-dimensional formulation using iterative processes. It is shown that the character of SHS depends substantially on the plasma jet power, processing distance, warming of the substrate, and on the internal energy of agglomerates (microcomposites) after mechanical activation of the initial charge. Optimal modes of forming Ni/NiCr + TiC composite coatings have been determined with the aid of computational experiments.


Articles with similar content:

IMPACT TOUGHNESS OF NANOCOMPOSITE MATERIALS FILLED WITH FULLERENE C60 PARTICLES
Composites: Mechanics, Computations, Applications: An International Journal, Vol.9, 2018, issue 2
M. Yu. Amelin, S. V. Panin, А. А. Sapronov, A. V. Buketov, N. N. Buketova, Mykola V. Brailo, P. О. Marushak
Pyrometry Applications for Laser, Plasma, and Electron-Beam Machining
Heat Transfer Research, Vol.33, 2002, issue 7&8
I. Yu. Smurov
INFLUENCE OF NITROGEN LASER BEAM ON THIN-FILM COATINGS
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.17, 2013, issue 2-3
Yury Akhmadeev, Yu. A. Chumakov, Olga V. Krysina, D. M. Lubenko
FRICTION AND WEAR OF POWDER COATINGS PRODUCED BY USING HIGH-ENERGY PULSED FLOWS
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.19, 2015, issue 2
A. Ph. Ilyuschenko, Kiastas V. Buikus, Nikolay A. Bosak, A. I. Shevtsov, A. N. Chumakov, Valiantsin M. Astashynski, G. F. Gromyko, A. M. Kuzmitski
STUDY OF THE STRUCTURE AND MECHANICAL CHARACTERISTICS OF SAMPLES OBTAINED BY SELECTIVE LASER MELTING TECHNOLOGY FROM VT6 ALLOY METAL POWDER
Nanoscience and Technology: An International Journal, Vol.8, 2017, issue 4
V. V. Kokareva, R. R. Kyarimov, A. V. Sotov, Anton V. Agapovichev, V. G. Smelov