Inscrição na biblioteca: Guest

INVESTIGATION OF THE FLOW STRUCTURE AND ACOUSTIC FIELD OF A TURBULENT JET WITH HIGH SWIRLING INTENSITY

Volume 47, Edição 2, 2016, pp. 111-137
DOI: 10.1615/TsAGISciJ.2016017878
Get accessGet access

RESUMO

The flow structure and acoustic field of free turbulent jets with high swirling intensity (W0) are experimentally studied. Under these conditions, a recirculation flow exists in the paraxial region of the jet and a tonal sound is emitted. The averaged and nonstationary characteristics of the jet flow, precession motion, and velocity and pressure fluctuations are investigated. The study is based on using constant-temperature anemometry and particle image velocimetry with conditional phase averaging. Flows behind various swirling devices are analyzed. It is shown that the main properties of the averaged flow are determined by the intensity of flow swirling in the source (W0). This fact allows the investigations to be limited by one source of the swirling jet. Unsteady flow in the jet and near the jet boundary is also simulated numerically. The results of the present investigations show that the jet flow structure is determined by the swirling intensity, which governs the configuration of the recirculation zone and precession of dynamic non-uniformities with respect to the jet axis. The precession frequency coincides with the first frequency of the discrete tone (f0), which is adequately described by the general formula Sh = f0d = u0 = 0.7W0 , where d is the exit diameter and u0 is the averaged exhaustion velocity. The precession motion in the jet generates oscillations of air inflowing to the jet with the same frequency f0. The acoustic field is formed approximately at a distance of 5-10d from the jet boundary. The results of the present investigations suggest a relationship between jet noise generation and flow rate oscillations in the flow ejected by the jet.

CITADO POR
  1. Krasheninnikov S Yu, Maslov VP, Mironov AK, Toktaliev PD, Investigation of acoustic and gas dynamic characteristics of strongly swirled turbulent jets, Journal of Physics: Conference Series, 980, 2018. Crossref

Última edição

KIRILL IVANOVICH SYPALO−50TH ANNIVERSARY NUMERICAL STUDY OF THE DISTURBANCES GENERATED BY MICROJETS IN A SUPERSONIC FLAT-PLATE BOUNDARY LAYER Andrei Valerievich Novikov, Alexander Vitalyevich Fedorov, Ivan Vladimirovich Egorov, Anton Olegovich Obraz, Nikolay Nikolaevich Semenov ANALYSIS OF THE MOVING DETONATION INTERACTION WITH TURBULENT BOUNDARY LAYERS IN A DUCT ON THE BASIS OF NUMERICAL SIMULATION Vladimir Anatolievich Sabelnikov, Vladimir Viktorovich Vlasenko, Sergey Sergeyevich Molev EXPERIMENTAL STUDY OF COUNTERFLOW BLOWING IN HIGH-SPEED FLOW THROUGH AN ASYMMETRIC SLOT IN THE LEADING EDGE OF A SHARP WEDGE Eduard Borisovich Vasilevskii, Ivan Valeryevich Ezhov, Pavel Vladimirovich Chuvakhov ASYMPTOTIC SOLUTIONS TO HYPERSONIC BOUNDARY LAYER EQUATIONS ON A FLAT WING WITH A POINT OF INFLECTION ON THE LEADING EDGE Georgiy Nikolaevich Dudin, Aleksey Vyacheslavovich Ledovskiy WAVE MODEL OF ORGANIZED STRUCTURES IN A TURBULENT BOUNDARY LAYER ON A PLATE WITH ZERO LONGITUDINAL PRESSURE GRADIENT Vladimir Alekseevich Zharov, Igor Ivanovich Lipatov, Rami Salah Saber Selim NUMERICAL SIMULATION OF THE FLOW AROUND LANDSCAPE FRAGMENTS AND SOLUTION VERIFICATION Viktor Viktorovich Vyshinsky, Koang T'in' Zoan POLYNOMIAL REPRESENTATION OF THERMODYNAMIC PROPERTIES OF COMBINED FUEL SYSTEMS IN RAMJET SIMULATION MODELS Timur Romanovich Zuev, Mikhail Semenovich Tararyshkin A MODEL TEST METHODOLOGY FOR THE INVESTIGATION OF AN ELASTICALLY SCALED MAIN ROTOR Maxim Andreyevich Ledyankin , Sergey Anatolyevich Mikhailov, Dmitry Valeryevich Nedel'ko, Timur Arturovich Agliullin INDEX, VOLUME 51, 2020
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa Políticas de preços e assinaturas Begell House Contato Language English 中文 Русский Português German French Spain