Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Plasma Medicine
SJR: 0.271 SNIP: 0.316 CiteScore™: 1.9

ISSN Imprimir: 1947-5764
ISSN On-line: 1947-5772

Plasma Medicine

DOI: 10.1615/PlasmaMed.2014008219
pages 57-69

Comparison of Biological Effects on Human Keratinocytes Using Different Plasma Treatment Regimes

Susanne Strassenburg
Department of Pharmaceutical Biology, Institute of Pharmacy, Ernst-Moritz-Arndt University, Greifswald, Germany
Ute Greim
Department of Pharmaceutical Biology, Institute of Pharmacy, Ernst-Moritz-Arndt University, Greifswald, Germany
Rene Bussiahn
Leibniz Institute for Plasma Science and Technology (INP Greifswald), Greifswald, Germany
Beate Haertel
Institute of Pharmacy, Pharmaceutical Biology, University of Greifswald Greifswald, Germany; Leibniz Institute for Plasma Science and Technology e.V. (INP), Greifswald, Germany
Kristian Wende
Leibniz-Institute for Plasma Science and Technology (INP Greifswald), ZIK Plasmatis, Greifswald, Germany
Thomas von Woedtke
Leibniz Institute for Plasma Science and Technology e.V. (INP), Greifswald, Germany
Ulrike Lindequist
Institute of Pharmacy, Ernst-Moritz-Arndt-University Greifswald F.-L.-Jahn-Str. 17, D-17489 Greifswald, Germany

RESUMO

This study investigated the influence of the plasma treatment regime on human keratinocytes (HaCaT cells). HaCaT cells were plasma treated with a volume dielectric barrier discharge plasma source in three different ways: directly, directly with culture medium exchange, and indirectly (in which only cell culture medium was exposed to plasma). The influence of dielectric barrier discharge plasma on viability, DNA, cell cycle, and intracellular concentration of reactive oxygen species in HaCaT cells was investigated. Direct and indirect plasma treatment caused a treatment time−dependent decrease of viable cells. An increase in DNA damage was observed immediately after plasma treatment, which was diminished after 24 h. Intracellular reactive oxygen species increased with longer plasma treatment times. The cell cycle analysis showed an accumulation of cells in the G2/M phase at the expense of cells in the G1 phase. An immediate exchange of culture medium after plasma treatment attenuated the described effects. Direct and indirect plasma treatment of adherent HaCaT cells resulted in comparable effects that depend on the plasma treatment time. Physical plasma seems to generate long-living reactive species or to modify organic components of the cell culture medium. Both mechanisms can initiate oxidative stress in human keratinocytes, which is responsible for the observed effects.


Articles with similar content:

Acidification and Nitrite/Nitrate Accumulation by Nonthermal Dielectric Barrier Discharge (DBD) Affect Human Dermal Fibroblasts
Plasma Medicine, Vol.5, 2015, issue 1
Sabrina Baldus, Paul C. Fuchs, Christian Oplander, Kiara Heuer, Christoph V. Suschek, Julian Balzer, Peter Awakowicz, Erhan Demir, Martin A. Hoffmanns
DNA Damage in Mammalian Cells by Atmospheric Pressure Microsecond-Pulsed Dielectric Barrier Discharge Plasma Is Not Mediated Via Lipid Peroxidation
Plasma Medicine, Vol.1, 2011, issue 2
Sameer Kalghatgi, Jane Azizkhan-Clifford
Using Helium-Generated Cold Plasma to Control Infection and Healing
Plasma Medicine, Vol.5, 2015, issue 2-4
Velika Deligianni, Paola Brun, Andrea Leonardi, Elena Tarricone, Roberto Cavazzana, Simona Corrao, Venera Russo, Matteo Zuin, Emilio Martines
Real-Time Monitoring of Intracellular Chemical Changes in Response to Plasma Irradiation
Plasma Medicine, Vol.7, 2017, issue 1
Aniruddha Ray, John Foster, Benjamin Yee, Pietro Ranieri, Raoul Kopelman, Leshern Karamchand
Chlorella vulgaris Beijer. as biosorbent: biosorbtion of gold and physiological principles of regeneration
International Journal on Algae, Vol.2, 2000, issue 3
Z. R. Ulberg, L. G. Stepura, T. G. Gruzina, M. N. Balakina