Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Plasma Medicine
SJR: 0.271 SNIP: 0.316 CiteScore™: 1.9

ISSN Imprimir: 1947-5764
ISSN On-line: 1947-5772

Plasma Medicine

DOI: 10.1615/PlasmaMed.2015012629
pages 193-209

A Review on the Selective Apoptotic Effect of Nonthermal Atmospheric-Pressure Plasma on Cancer Cells

Kiwon Song
Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Korea
Gen Li
Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Korea
Yonghao Ma
Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Korea

RESUMO

Nonthermal atmospheric-pressure plasma (NTAPP) is defined as a partially ionized gas containing electrically charged particles. Due to its low temperature and generation in atmospheric pressure, NTAPP has been useful for biomedical applications such as sterilization and wound healing. Recently, several groups have reported that NTAPP is able to induce apoptosis selectively in cancer cells, which opens a new discussion regarding whether NTAPP can be a competitive cancer therapy. Although most research has continued with in vitro experiments, a few groups have already demonstrated that NTAPP can be applied to xenograft mouse models to decrease the size of tumors. However, the mechanism of how the NTAPP efficiently induces apoptosis in cancer cells is not well understood. Results of current studies strongly suggest reactive oxygen species (ROS) and reactive nitrogen species (RNS) to be the primary components that induce DNA double-strand breaks (DSBs) to cause apoptosis. Cancer cells are, in general, defective in genes responsible for cell cycle control. Thus, the effect of NTAPP on the signaling and checkpoint pathways to control the cell cycle should be examined to understand the molecular mechanism of the selective apoptosis by NTAPP. This review evaluates the selective effect of NTAPP on cancer cells and their molecular mechanisms; our results support the potential of NTAPP as an efficient anticancer therapy in near future.


Articles with similar content:

Review of Poly (ADP-ribose) Polymerase (PARP) Mechanisms of Action and Rationale for Targeting in Cancer and Other Diseases
Critical Reviews™ in Eukaryotic Gene Expression, Vol.24, 2014, issue 1
Longshan Li, Farjana J. Fattah, Jinming Gao, Julio Morales, David A. Boothman, Ying Dong, Malina Patel, Erik A. Bey
Mechanisms of Yin Yang 1 in Oncogenesis: The Importance of Indirect Effects
Critical Reviews™ in Oncogenesis, Vol.16, 2011, issue 3-4
Michael L. Atchison, Kristina Zaprazna, Arindam Basu, Madhusudhan Papasani
Stable Water Clusters−Mediated Molecular Alterations in Human Melanoma Cell Lines
Forum on Immunopathological Diseases and Therapeutics, Vol.3, 2012, issue 3-4
Stavroula Baritaki, Benjamin Bonavida
Singlet Oxygen in Photosensitization
Journal of Environmental Pathology, Toxicology and Oncology, Vol.25, 2006, issue 1-2
Petras Juzenas, Johan Moan
Photochemical Mutagenesis: Examples and Toxicological Relevance
Journal of Environmental Pathology, Toxicology and Oncology, Vol.20, 2001, issue 4
Elmar Gocke