Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Multiphase Science and Technology
SJR: 0.183 SNIP: 0.483 CiteScore™: 0.5

ISSN Imprimir: 0276-1459
ISSN On-line: 1943-6181

Multiphase Science and Technology

DOI: 10.1615/MultScienTechn.2019031210
pages 215-234

DRAG CORRELATIONS OF ELLIPSOIDAL BUBBLES IN CLEAN AND FULLY CONTAMINATED SYSTEMS

Junming Chen
Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
Kosuke Hayashi
Graduate School of Engineering, Kobe University, 1-1, Rokkodai, Nada, Kobe 657-8501, Japan
Shigeo Hosokawa
Kansai University
Akio Tomiyama
Graduate School of Engineering, Kobe University, 1-1, Rokkodai, Nada, Kobe 657-8501, Japan

RESUMO

Effects of surface-active agents (surfactants) and bubble aspect ratios on the terminal velocity of single ellipsoidal bubbles rectilinearly rising through stagnant liquids were investigated to develop a reliable drag coefficient CD correlation for fully contaminated bubbles in the viscous-force dominant regime. Experimental data of CD obtained in our previous studies were used. Triton X-100, 1-octanol, 1-decanol, and sodium dodecyl sulfate (SDS) were used for surfactant in the experiments. A simple functional form of CD expressed in terms of the bubble Reynolds number Re and the bubble aspect ratio E was proposed. The proposed correlation gives good evaluations of CD for fully contaminated bubbles for −8.0 ≤ logM ≤ −3.2, 0.53 ≤ Re ≤ 166, and 0.12 ≤ Eo ≤ 8.21, where M is the Morton number, Re the bubble Reynolds number, and Eo the Eötvös number. A CD correlation for clean ellipsoidal bubbles was also proposed by taking into account the shape effects on CD. The functional form of the CD correlation is much simpler than available correlations, whereas the accuracy is almost the same. The applicable range of the CD correlation for clean bubbles is −11 ≤ logM ≤ 0.63, 3.2 × 10−3 ≤ Re ≤ 720, and 0.042 ≤ Eo ≤ 29.

Referências

  1. Aoyama, S., Hayashi, K., Hosokawa, S., and Tomiyama, A., Shapes of Ellipsoidal Bubbles in Infinite Stagnant Liquids, Int. J. Multiphase Flow, vol. 79, pp. 23-30, 2016.

  2. Aoyama, S., Hayashi, K., Hosokawa, S., and Tomiyama, A., Shapes of Single Bubbles in Infinite Stagnant Liquids Contaminated with Surfactant, Exp. Therm. Fluid Sci., vol. 96, pp. 460-469,2018.

  3. Clift, R., Grace, J., and Weber, M., Bubbles, Drops, and Particles, Cambridge, MA: Academic Press, 1978.

  4. Ganser, G.H., A Rational Approach to Drag Prediction of Spherical and Non-Spherical Particles, Powder Technol., vol. 77, pp. 143-152, 1993.

  5. Hadamard, J.S., Mouvement Permanent Tent d'une Sphere Liquide et Visquese Dans un Liquide Visqueux, Comptes Rendus I'Academie Sci., vol. 152, pp. 1735-1738, 1911.

  6. Hayashi, K. and Tomiyama, A., Interface Tracking Methods, in Encyclopedia of Two-Phase Heat Transfer and Flow III, Singapore: World Scientific, Chap. 2,2018.

  7. Holzer, A. and Sommerfeld, M., New Simple Correlation Formula for the Drag Coefficient of Non-Spherical Particles, Powder Technol, vol. 184, pp. 361-365, 2008.

  8. Kurimoto, R., Hayashi, K., and Tomiyama, A., Terminal Velocity of Clean and Fully-Contaminated Drops in Vertical Pipes, Int. J. Multiphase Flow, vol. 49, pp. 8-23, 2013.

  9. Leith, D., Drag on Nonspherical Objects, Aerosol Sci. Technol., vol. 6, pp. 153-161,1987.

  10. Levich, V., Physicochemical Hydrodynamics, Englewood Cliffs, NJ: Prentice Hall, 1962.

  11. Liu, L., Yan, H., Zhao, G., and Zhuang, J., Experimental Studies on the Terminal Velocity of Air Bubbles in Water and Glycerol Aqueous Solution, Exp. Therm. Fluid Sci., vol. 78, pp. 254-265, 2016.

  12. Loth, E., Drag of Non-Spherical Solid Particles of Regular and Irregular Shape, Powder Technol., vol. 182, no. 3, pp. 342-353, 2008.

  13. Mei, R., History Force on a Sphere due to a Step Change in the Free-Stream Velocity, Int. J. Multiphase Flow, vol. 19, pp. 509-525,1993.

  14. Mei, R., Kalusner, J.F., and Lawrence, C.J., A Note on the History Force on a Spherical Bubble at Finite Reynolds Number, Phys. Fluids, vol. 6, pp. 418-420, 1994.

  15. Meier, M., Towards a DNS of Multiphase Flow, Institutor Energietechnik, Zurich, Germany, Internal Rep. LA-8355, 2000.

  16. Militzer, J., Kan, J.M., Hamdullahpur, F., Amyotte, P.R., and Al Taweel, A.M., Drag Coefficient for Axisymmetric Flow around Individual Spheroidal Particles, Powder Technol., vol. 57, pp. 193-195, 1989.

  17. Min, C. and Gibou, F., A Second Order Accurate Level Set Method on Non-Graded Adaptive Cartesian Grids, J. Comput. Phys., vol. 225, no. 1, pp. 300-321, 2007.

  18. Moore, D.W., The Velocity Rise of Distorted Gas Bubbles in a Liquid of Small Viscosity, J. Fluid Mech., vol. 23, pp. 749-766, 1965.

  19. Rastello, M., Marie, J.-L., and Lance, M., Drag and Lift Forces on Clean Spherical and Ellipsoidal Bubbles in a Solid-Body Rotating Flow, J. Fluid Mech, vol. 682, pp. 434-459,2011.

  20. Rybczynski, W., On the Translatory of a Fluid Sphere in a Viscous Medium, Bull. Acad. Sci. Kracow, Ser. A, pp. 40-46, 1911.

  21. Schiller, L. and Naumann, A.Z., Uber die Grundlegenden Berechnungen bei der Schwerkraftaufbereitung, Zeitschridt Vereines Deutscher Ingenieure., vol. 44, pp. 318-320, 1933.

  22. Sugihara, K., Sanada, T., Shirota, M., and Watanabe, M., Behavior of Single Rising Bubbles in Superpurified Water, Kagaku Kogaku Ronbunshu, vol. 5, pp. 402-408, 2007 (in Japanese).

  23. Sussman, M., Smereka, P., and Osher, S., A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow, J. Comput. Phys, vol. 114, pp. 146-159, 1994.

  24. Sussman, M., Fatemi, E., Smereka, P., and Osher, S., An Improved Level Set Method for Incompressible Two-Phase Flows, Comp. Fluids, vol. 27, pp. 663-680, 1998.

  25. Takagi, S., Ogasawara, T., and Matsumoto, Y., The Effects of Surfactant on the Multiscale Structure of Bubbly Flows, Philosoph. Trans, Ser. A, vol. 366, pp. 2117-2129,2008.

  26. Takagi, S., Uda, T., Watanabe, Y., and Matsumoto, Y., Behavior of a Rising Bubble in Water with Surfactant Dissolution, Trans. Jpn. Soc. Mech. Eng., vol. 69, no. 686, pp. 2192-2199, 2003 (in Japanese).

  27. Tomiyama, A., Kataoka, I., Zun, I., and Sakaguchi, T., Drag Coefficients of Single Bubbles under Normal and Micro Gravity Conditions, JSMEInt., vol. 41, no. 2, pp. 472-479,1998.


Articles with similar content:

DIMENSIONAL ANALYSIS OF TERMINAL VELOCITY OF A TAYLOR BUBBLE IN A VERTICAL PIPE
Multiphase Science and Technology, Vol.22, 2010, issue 3
Akio Tomiyama, Ryo Kurimoto, Kosuke Hayashi
ENERGIESPEICHERUNG IM FULLELEMENT EINES REGENERATORS
International Heat Transfer Conference 4, Vol.4, 1970, issue
Tadeusz Bes
EXPERIMENTAL INVESTIGATION OF NATURAL CONVECTION HEAT TRANSFER IN SIMPLE AND OBSTRUCTED HOHIZONTAL ANNULI
International Heat Transfer Conference 3 , Vol.6, 1966, issue
J. Lis
Combined Method of Strong Approximation of Multiple Stochastic Integrals
Journal of Automation and Information Sciences, Vol.34, 2002, issue 8
Dmitriy F. Kuznetsov
INFLUENCE OF NOZZLE EXIT CONDITIONS ON THE NEAR-FIELD MEAN FLOW CHARACTERISTICS OF LOW-ASPECT-RATIO RECTANGULAR JETS
International Journal of Fluid Mechanics Research, Vol.44, 2017, issue 4
Madjid Birouk, Julien Barber, Meghdad Saediamiri