Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
International Journal for Multiscale Computational Engineering
Fator do impacto: 1.016 FI de cinco anos: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Imprimir: 1543-1649
ISSN On-line: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2013006064
pages 389-405


R. Ansari
Department of Mechanical Engineering, University of Guilan, P.O. Box 3756, Rasht, Iran
Raheb Gholami
Department of Mechanical Engineering, Lahijan Branch, Islamic Azad University, P.O. Box 1616, Lahijan, Iran
M. Faghih Shojaei
Department of Mechanical Engineering, University of Guilan, P.O. Box 3756, Rasht, Iran
V. Mohammadi
Department of Mechanical Engineering, University of Guilan, P.O. Box 3756, Rasht, Iran
S. Sahmani
Department of Mechanical Engineering, University of Guilan, P.O. Box 3756, Rasht, Iran


According to the theory of thermal elasticity mechanics, thermal buckling characteristics of microbeams made of functionally graded materials (FGMs) are presented. The material properties of FGM microbeams are considered to be graded in the thickness direction on the basis of the MoriTanaka homogenization scheme. Based on the strain gradient elasticity theory, a size-dependent elastic beam model within the framework of the Timoshenko beam theory is developed containing three internal material length scale parameters to interpret size effect. By using Hamilton's principle, the higher-order governing differential equations of motion and related boundary conditions are derived. Afterward, the generalized differential quadrature (GDQ) method is employed to discretize the governing differential equations along various end supports and then the critical thermal buckling loads of FGM microbeams with three commonly used sets of boundary conditions are determined. The applicability of the present nonclassical beam model to predict thermal buckling behavior of FGM microbeams is established via various numerical results. It is found that the difference between thermal buckling of microbeams subjected to the uniform, linear, and nonlinear temperature distributions is more significant corresponding to the higher values of material property gradient index.


  1. Ansari, R., Sahmani, S., and Arash, B., Nonlocal plate model for free vibrations of single-layered graphene sheets. DOI: 10.1016/j.physleta.2010.10.028

  2. Ansari, R., Gholami, R., and Darabi, M. A., Thermal buckling analysis of embedded single-walled carbon nanotubes with arbitrary boundary conditions using the nonlocal Timoshenko beam theory. DOI: 10.1080/01495739.2011.616802

  3. Ansari, R., Gholami, R., and Sahmani, S., Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory. DOI: 10.1016/j.compstruct.2011.06.024

  4. Ansari, R., Ramezannezhad, H., and Gholami, R., Nonlocal beam theory for nonlinear vibrations of embedded multiwalled carbon nanotubes in thermal environment. DOI: 10.1007/s11071-011-0142-z

  5. Ansari, R., Gholami, R., and Darabi, M. A., A nonlinear Timoshenko beam formulation based on strain gradient theory. DOI: 10.2140/jomms.2012.7.195

  6. Ansari, R., Gholami, R., and Sahmani, S., Study of small scale effects on the nonlinear vibration response of functionally graded Timoshenko microbeams based on the strain gradient theory. DOI: 10.1115/1.4006040

  7. Aydogdu, M., Thermal buckling analysis of cross-ply laminated composite beams with general boundary conditions. DOI: 10.1016/j.compscitech.2006.05.021

  8. Aydogdu, M. and Taskin, V., Free vibration analysis of functionally graded beams with simply supported edges. DOI: 10.1016/j.matdes.2006.02.007

  9. Fleck, N. A. and Hutchinson, J. W., Phenomenological theory for strain gradient effects in plasticity. DOI: 10.1016/0022-5096(93)90072-N

  10. Ganapathi, M., Dynamic stability characteristics of functionally graded materials shallow spherical shells. DOI: 10.1016/j.compstruct.2006.01.012

  11. Gupta, R. K., Babu, G. J., Janardhan, G. R., and Rao, G. V., Comparative study of thermal post-buckling analysis of uniform slender and shear flexible columns using rigorous finite element and intuitive formulations. DOI: 10.1016/j.ijmecsci.2009.01.002

  12. Gupta, R. K., Gunda, B. J., Janardhan, R. G., and Rao, G. V., Thermal post-buckling analysis of slender columns using the concept of coupled displacement field. DOI: 10.1016/j.ijmecsci.2009.12.005

  13. Khdeir, A. A., Thermal buckling of cross-ply laminated composite beams. DOI: 10.1007/BF01261672

  14. Kong, S., Zhou, S., Nie, Z., and Wang, K., Static and dynamic analysis of micro beams based on strain gradient elasticity theory. DOI: 10.1016/j.ijengsci.2008.08.008

  15. Lam, D. C. C., Yang, F., Chong, A. C. M., Wang, J., and Tong, P., Experiments and theory in strain gradient elasticity. DOI: 10.1016/S0022-5096(03)00053-X

  16. Lee, J., Thermally induced buckling of laminated composites by a layerwise theory. DOI: 10.1016/S0045-7949(96)00232-5

  17. Lee, J. and Choi, S., Thermal buckling and postbuckling analysis of a laminated composite beam with embedded SMA actuators. DOI: 10.1016/S0263-8223(00)00038-6

  18. Ma, H. M., Gao, X. L., and Reddy, J. N., A nonclassical Reddy-Levinson beam model based on a modified couple stress theory. DOI: 10.1615/IntJMultCompEng.v8.i2.30

  19. Malekzadeh, P., Two-dimensional in-plane free vibrations of functionally graded circular arches with temperature-dependent properties. DOI: 10.1016/j.compstruct.2009.04.034

  20. Malekzadeh, P. and Vosoughi, A. R., DQM large amplitude vibration of composite beams on nonlinear elastic foundations with restrained edges. DOI: 10.1016/j.cnsns.2007.10.014

  21. Pandey, R., Shukla, K. K., and Jain, A., Thermoelastic stability analysis of laminated composite plates: An analytical approach. DOI: 10.1016/j.cnsns.2008.02.010

  22. Shariyat, M., Thermal buckling analysis of rectangular composite plates with temperature-dependent properties based on a layerwise theory. DOI: 10.1016/j.tws.2007.03.004

  23. Shen, S. H., Thermal postbuckling behavior of imperfect shear deformable laminated plates with temperature-dependent properties. DOI: 10.1016/S0045-7825(01)00172-4

  24. Timoshenko, S. P. and Goodier, J. N., Theory of Elasticity.

  25. Vaz, M. A., Cyrino, J. C. R., and Neves, A. C., Initial thermo-mechanical post-buckling of beams with temperature-dependent physical properties. DOI: 10.1016/j.ijnonlinmec.2009.11.006

  26. Wang, B., Zhao, J., and Zhou, S., A micro scale Timoshenko beam model based on strain gradient elasticity theory. DOI: 10.1016/j.euromechsol.2009.12.005

  27. Yang, Y., Chong, A. C. M., Lam, D. C. C., and Tong, P., Couple stress based strain gradient theory for elasticity. DOI: 10.1016/S0020-7683(02)00152-X