Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
International Journal for Multiscale Computational Engineering
Fator do impacto: 1.016 FI de cinco anos: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Imprimir: 1543-1649
ISSN On-line: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2013005705
pages 505-525


Philip Moseley
Department of Mechanical Engineering, Northwestern University, Evanston, Illinois, USA
Jay Oswald
School for Engineering of Matter, Transport and Energy, Arizona State University, Phoenix, Arizona, USA
Ted Belytschko
Department of Mechanical Engineering, Northwestern University, Evanston, Illinois, USA


New procedures for modeling interactions among dislocations and nanosized cracks within the dynamically evolving bridging domain method (DEBDM) have been developed. The DEBDM is an efficient concurrent atomistic-to-continuum approach based on the bridging domain method, where the atomic domain dynamically adapts to encompass evolving defects. New algorithms for identifying and coarse graining dislocation-induced slip planes have been added to the method, which previously focused on fracture. Additional improvements include continuously varying BDM energy-weighting functions, which allow the fine-graining and coarse-graining transitions to occur smoothly over multiple timesteps, reducing the potential for nonphysical or unstable behavior. Several examples of interacting dislocations and nanocracks are presented to demonstrate the flexibility and efficiency of the method.


  1. Abraham, F., Broughton, J., Bernstein, N., and Kaxiras, E., Spanning the continuum to quantum length scales in a dynamic simulation of brittle fracture. DOI: 10.1209/epl/i1998-00536-9

  2. Areias, P. and Belytschko, T., Two-scale shear band evolution by local partition of unity. DOI: 10.1002/nme.1589

  3. Bauman, P., Dhia, H., Elkhodja, N., Oden, J., and Prudhomme, S., On the application of the arlequin method to the coupling of particle and continuum models. DOI: 10.1007/s00466-008-0291-1

  4. Belytschko, T. and Black, T., Elastic crack growth in finite elements with minimal remeshing. DOI: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S

  5. Belytschko, T., Gracie, R., and Ventura, G., A review of extended/generalized finite element methods for material modeling. DOI: doi:10.1088/0965-0393/17/4/043001

  6. Belytschko, T., Parimi, C., Moes, N., Sukumar, N., and Usui, S., Structured extended finite element methods for solids defined by implicit surfaces. DOI: 10.1002/nme.686

  7. Belytschko, T. and Xiao, S., Coupling methods for continuum model with molecular model.

  8. Belytschko, T., Xiao, S., Schatz, G., and Ruoff, R., Atomistic simulations of nanotube fracture. DOI: 10.1103/PhysRevB.65.235430

  9. Ben Dhia, H., Multiscale mechanical problems: the arlequin method. DOI: 10.1016/S1251-8069(99)80046-5

  10. Berendsen, H., Postma, J., Van Gunsteren, W., DiNola, A., and Haak, J., Molecular dynamics with coupling to an external bath. DOI: 10.1063/1.448118

  11. Broughton, J., Abraham, F., Bernstein, N., and Kaxiras, E., Concurrent coupling of length scales: Methodology and application. DOI: 10.1103/PhysRevB.60.2391

  12. Chamoin, L., Prudhomme, S., Ben Dhia, H., and Oden, T., Ghost forces and spurious effects in atomic-to-continuum coupling methods by the arlequin approach. DOI: 10.1002/nme.2879

  13. Chessa, J. and Belytschko, T., An extended finite element method for two-phase fluids. DOI: 10.1115/1.1526599

  14. Fish, J., Nuggehally, M., Shephard, M., Picu, C., Badia, S., Parks, M., and Gunzburger, M., Concurrent ATC coupling based on a blend of the continuum stress and the atomistic force. DOI: 10.1016/j.cma.2007.05.020

  15. Girifalco, L. and Weizer, V., Application of the morse potential function to cubic metals. DOI: 10.1103/PhysRev.114.687

  16. Gracie, R. and Belytschko, T., Concurrently coupled atomistic and xfem models for dislocations and cracks. DOI: 10.1002/nme.2488

  17. Gracie, R. and Belytschko, T., An adaptive concurrent multiscale method for the dynamic simulation of dislocations. DOI: 10.1002/nme.3112

  18. Gracie, R., Oswald, J., and Belytschko, T., On a new extended finite element method for dislocations: Core enrichment and nonlinear formulation. DOI: 10.1016/j.jmps.2007.07.010

  19. Miller, R. and Tadmor, E., The quasicontinuum method: Overview, applications and current directions. DOI: 10.1023/A:1026098010127

  20. Miller, R. and Tadmor, E., A unified framework and performance benchmark of fourteen multiscale atomistic/continuum coupling methods. DOI: 10.1088/0965-0393/17/5/053001

  21. Mo&#235;s, N., Dolbow, J., and Belytschko, T., A finite element method for crack growth without remeshing. DOI: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J

  22. Moseley, P., Oswald, J., and Belytschko, T., Adaptive atomistic-to-continuum modeling of propagating defects. DOI: 10.1002/nme.4358

  23. Mullins, M. and Dokainish, M., Simulation of the (001) plane crack in &#945;-iron employing a new boundary scheme. DOI: 10.1080/01418618208236930

  24. Oswald, J., Gracie, R., Khare, R., and Belytschko, T., An extended finite element method for dislocations in complex geometries: Thin films and nanotubes. DOI: 10.1016/j.cma.2008.12.025

  25. Qu, S., Shastry, V., Curtin,W., and Miller, R., A finite-temperature dynamic coupled atomistic/discrete dislocation method. DOI: 10.1088/0965-0393/13/7/007

  26. Shenoy, V. B., Miller, R., Tadmor, E. B., Phillips, R., and Ortiz, M., Quasicontinuum models of interfacial structure and deformation. DOI: 10.1103/PhysRevLett.80.742

  27. Shilkrot, L. E., Miller, R. E., and Curtin, W. A., Multiscale plasticity modeling: Coupled atomistics and discrete dislocation mechanics. DOI: 10.1016/j.jmps.2003.09.023

  28. Tadmor, E., Ortiz, M., and Philips, R., Quasicontinuum analysis of defects in solids. DOI: 10.1080/01418619608243000

  29. Ventura, G., Gracie, R., and Belytschko, T., Fast integration and weight function blending in the extended finite element method. DOI: 10.1002/nme.2387

  30. Xiao, S. and Belytschko, T., A bridging domain method for coupling continua with molecular dynamics. DOI: 10.1016/j.cma.2003.12.053

  31. Xu, M. and Belytschko, T., Conservation properties of the bridging domain method for coupled molecular/continuum dynamics. DOI: 10.1002/nme.2323

  32. Xu, M., Gracie, R., and Belytschko, T., A continuum-to-atomistic bridging domain method for composite lattices. DOI: 10.1002/nme.2745

Articles with similar content:

Multiscale Finite Elements for Acoustics: Continuous, Discontinuous, and Stabilized Methods
International Journal for Multiscale Computational Engineering, Vol.6, 2008, issue 6
Isaac Harari
International Journal for Multiscale Computational Engineering, Vol.17, 2019, issue 2
Blaž Hudobivnik, Peter Wriggers, Fadi Aldakheel
International Journal for Multiscale Computational Engineering, Vol.14, 2016, issue 4
Joseph E. Bishop, Mario J. Martinez, Pania Newell
Hybrid Methods in Engineering, Vol.4, 2002, issue 1&2
Mikhail D. Mikhailov, M. Ungs, Renato M. Cotta
Analysis and Numerical Simulation of Discontinuous Displacements Modeling Fine Scale Damage in a Continuum Under Mixed-Mode Loading
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 4
Krishna Garikipati