Inscrição na biblioteca: Guest
International Journal for Multiscale Computational Engineering

Publicou 6 edições por ano

ISSN Imprimir: 1543-1649

ISSN On-line: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

Multiscale Mechanics of Nonlocal Effects in Microheterogeneous Materials

Volume 2, Edição 1, 2004, 14 pages
DOI: 10.1615/IntJMultCompEng.v2.i1.10
Get accessGet access

RESUMO

We consider a linearly thermoelastic composite medium, which consists of a homogeneous matrix containing either deterministic (periodic and non-periodic) or random (statistically homogeneous and inhomogeneous, so-called graded) field of inclusions. For functionally graded materials when the concentration of the inclusions is a function of the coordinates, the micromechanical approach is based on the generalization of the "multiparticle effective field" method, previously proposed for statistically homogeneous random structure composites by the author (see for references and details Buryachenko, Appl. Mech. Reviews 2001, 54, 1-47). Both the Fourier transform method and iteration method are analyzed. The nonlocal integral and differential effective operators of elastic effective properties are estimated. The nonlocal dependencies of the effective elastic moduli as well as of conditional averages of the strains in the components on the concentration of the inclusions in a certain neighborhood of point considered are detected; the scale effect is discovered. The proposed theory provides the bridging of length scales which is a paramount factor in understanding and controlling material microinhomogeneity at the microscale and interpreting them at the macroscale. The combined coupled concept of introducing both the integral and differential operator linking microscale and macroscale enables one to address two issues simultaneously.

CITADO POR
  1. Marchais J., Rey C., Chamoin L., Geometrically consistent approximations of the energy for the transition between nonlocal and local discrete models, Computational Materials Science, 85, 2014. Crossref

Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa Políticas de preços e assinaturas Begell House Contato Language English 中文 Русский Português German French Spain