Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
International Journal for Multiscale Computational Engineering
Fator do impacto: 1.016 FI de cinco anos: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Imprimir: 1543-1649
ISSN On-line: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v8.i6.20
pages 561-584

Tailoring Crystallinity and Nanomechanical Properties of Clay Polymer Nanocomposites: A Molecular Dynamics Study

Debashis Sikdar
Department of Civil Engineering, North Dakota State University, Fargo, ND 58105, USA
Dinesh R. Katti
Department of Civil Engineering, North Dakota State University, Fargo, ND 58105, USA
Kalpana S. Katti
Department of Civil Engineering, North Dakota State University, Fargo, ND 58105, USA
Rahul Bhowmik
Department of Civil Engineering, North Dakota State University, Fargo, ND 58105, USA

RESUMO

Polymer clay nanocomposites (PCNs) synthesized using different organic modifiers show enhanced nanomechanical properties and difference in percentage crystallinity of polymer in the PCN. It appears that organic modifiers have an influence on the nanomechanical properties and crystallinity of PCNs. Tailoring crystallinity and nanomechanical properties of PCNs to required mechanical behavior of PCN is a promising technology. In addition, this is essential for robust multiscale modeling of nanocomposites through a hierarchical modeling approach, wherein nanomechanical behavior from experiments and molecular simulations are incorporated into finite element models. To evaluate the influence of molecular structure of organic modifiers on the crystallinity and nanomechanical properties of PCN, five organic modifiers have been selected in this study in such a way that either they have identical end functional groups but different backbone chain lengths or identical backbone chain length with different functional groups. The PCNs synthesized with the same polymer (polyamide 6) and clay (sodium montmorillonite) but different organic modifiers show significant difference in the crystallinity and nanomechanical properties. In this work molecular models of PCNs based on these organic modifiers have been built and interaction energies between different constituents of PCNs have been evaluated using molecular dynamics simulation. By comparing the interaction energies with experimental results, important insight is obtained regarding the crystallinity and nanomechanical properties of PCNs. It is observed that interactions between the polymer and the organic modifier are key to controlling the nanomechanical properties of PCNs, and by varying the backbone chain length of the organic modifiers, the nanomechanical properties and crystallinity of a particular polymer-based PCN can be tailored to a significant extent. Also by changing the functional groups of modifiers, the crystallinity and nanomechanical properties of PCNs can be altered.

Referências

  1. Besler, B. H., Merz, K. M., and Kollman, P. A., Atomic charges derived from semiempirical methods. DOI: 10.1002/jcc.540110404

  2. Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., and Karplus, M., CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. DOI: 10.1002/jcc.540040211

  3. Dionne, P. J., Ozisik, R., and Picu, C. R., Structure and dynamics of polyethelene nanocomposites. DOI: 10.1021/ma051037c

  4. Dionne, P. J., Picu, C. R., and Ozisik, R., Adsorption and desorption dynamics of linear polymer chains to spherical nanoparticles: A Monte Carlo investigation. DOI: 10.1021/ma0527754

  5. Feller, S. E., Zhang, Y., Pastor, R. W., and Brooks, B. R., Constant pressure molecular dynamics simulation: The Langevin piston method. DOI: 10.1063/1.470648

  6. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Zakrzerwski, V. G., Montgomery, J. A., Jr., Stratmann, R. E., Burant, J. C., Dapprich, S., Millam, J. M., Daniels, A. D., Kudin, K. N., Strain, M. C., Farkas, J., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G. A., Ayala, P. Y., Cui, Q., Morokuma, K., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Cioslowski, J., Ortiz, J. V., Baboul, A. G., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Gonzalez, C., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M.W., Andres, J. L., Gonzalez, C., Head-Gordon, M., Replogle, E. S., and Pople, J. A., Gaussian 98.

  7. Gaudel-Siri, A., Brocorens, P., Siri, D., Gardebien, F., Bredas, J. L., and Lazzaroni, R., Molecular dynamics study of ϵ-caprolactone intercalated in wyoming sodium montmorillonite. DOI: 10.1021/la034491n

  8. Ginzburg, V. V., Singh, C., and Balazs, A. C., Theoretical phase diagrams of polymer/clay composites: The role of grafted organic modifiers. DOI: 10.1021/ma991324e

  9. Hsueh, H. B. and Chen, C. Y., Preparation and properties of LDHs/epoxy nanocomposites. DOI: 10.1016/S0032-3861(03)00579-2

  10. Humphrey, W., Dalke, A., and Schulten, K., VMD—Visual molecular dynamics. DOI: 10.1016/0263-7855(96)00018-5

  11. Kalé, L., Skeel, R., Bhandarkar, M., Brunner, R., Gursoy, A., Krawetz, N., Phillips, J., Shinozaki, A., Varadarajan, K., and Schulten, K., NAMD2: Greater scalability for parallel molecular dynamics. DOI: 10.1006/jcph.1999.6201

  12. Karasawa, N. and Goddard,W. A., Acceleration of convergence for lattice sums. DOI: 10.1021/j100358a012

  13. Katti, D., Schmidt, S., Ghosh, P., and Katti, K., Modeling the response of pyrophyllite interlayer to applied stress using steered molecular dynamics. DOI: 10.1346/CCMN.2005.0530207

  14. Katti, K. S., Sikdar, D., Katti, D. R., Ghosh, P., and Verma, D., Molecular interactions in intercalated organically modified clay and clay-polycaprolactam nanocomposites: Experiments and modeling. DOI: 10.1016/j.polymer.2005.11.055

  15. Ma, C. C. M., Kuo, C. T., Kuan, H. C., and Chiang, C. L., Effects of swelling agents on the crystallization behavior and mechanical properties of polyamide 6/clay nanocomposites. DOI: 10.1002/app.11897

  16. Martyna, G. J., Tobias, D. J., and Klein, M. L., Constant pressure molecular dynamics algorithms. DOI: 10.1063/1.467468

  17. Meneghetti, P. and Qutubuddin, S., Synthesis, thermal properties and applications of polymer-clay nanocomposites. DOI: 10.1016/j.tca.2006.01.017

  18. Mitsunaga, M., Ito, Y., Ray, S. S., Okamoto, M., and Hironaka, K., Intercalated polycarbonate/clay nanocomposites: Nanostructure control and foam processing. DOI: 10.1002/mame.200300097

  19. Okada, A., Kawasumi, M., Usuki, A., Kojima, Y., Kurauchi, T., and Kamigaito, O., Nylon 6-clay hybrid. DOI: 10.1557/PROC-171-45

  20. Qin, H., Zhang, S., Zhao, C., and Yang, M., Zero-order kinetics of the thermal degradation of polypropylene/clay nanocomposites. DOI: 10.1002/polb.20668

  21. Ray, S. S. and Okamoto, M., Polymer/layered silicate nanocomposites: A review from preparation to processing. DOI: 10.1016/j.progpolymsci.2003.08.002

  22. Sikdar, D., Katti, D. R., and Katti, K. S., A molecular model for ε-caprolactam based intercalated polymer clay nanocomposites: Integrating modeling and experiments. DOI: 10.1021/la060243q

  23. Sikdar, D., Katti, D. R., Katti, K. S., and Bhowmik, R., Insight into molecular interactions between constituents in polymer clay nanocomposites. DOI: 10.1016/j.polymer.2006.05.026

  24. Sikdar, D., Katti, D., Katti, K., and Mohanty, B., Effect of organic modifiers on dynamic and static nanomechanical properties and crystallinity of intercalated clay-polycaprolactam nanocomposites. DOI: 10.1002/app.26284

  25. Sikdar, D., Katti, D., and Katti, K., The role of interfacial interactions on the crystallinity and mechanical properties of clay polymer nanocomposites: A molecular dynamics study. DOI: 10.1002/app.27504

  26. Sikdar, D., Pradhan, S. M., Katti, D. R., Katti, K. S., and Mohanty, B., Altered phase model of polymer clay nanocomposites. DOI: 10.1021/la800583h

  27. Sikdar, D., Katti, K. S., and Katti, D. R., Molecular interactions alter clay and polymer structure in polymer clay nanocomposites.

  28. Sikdar, D., Katti, D., Katti, K., and Mohanty, B., Influence of backbone chain length and functional groups of organic modifiers on crystallinity and nanomechanical properties of intercalated clay-polycaprolactam nanocomposites. DOI: 10.1504/IJNT.2009.024641

  29. Singh, U. C. and Kollman, P. A., An approach to computing electrostatic charges for molecules. DOI: 10.1002/jcc.540050204

  30. Skipper, N. T., Sposito, G., and Chang, F. R., Monte Carlo simulation of interlayer molecular structure in swelling clay minerals, 1. Methodology. DOI: 10.1346/CCMN.1995.0430303

  31. Skipper, N. T., Sposito, G., and Chang, F. R., Monte Carlo Simulation of Interlayer Molecular Structure in Swelling Clay Minerals. 2. Monolayer Hydrates. DOI: 10.1346/CCMN.1995.0430304

  32. Teppen, B. J., Rasmussen, K., Bertsch, P. M., Miller, D. M., and Schafer, L., Molecular dynamics modeling of clay minerals, 1. Gibbsite, kaolinite, pyrophyllite, and beidellite. DOI: 10.1021/jp961577z

  33. Vaia, R. A. and Giannelis, E. P., Polymer melt intercalation in organically-modified layered silicates: Model predictions and experiment. DOI: 10.1021/ma9603488

  34. Vaia, R. A., Pinnavaia, T. J., and Beall, G. W., Polymer-Clay Nanocomposites. DOI: 10.5772/15657

  35. Zhang, J. and Wilkie, C. A., Preparation and flammability properties of polyethylene-clay nanocomposites. DOI: 10.1016/S0141-3910(02)00398-1


Articles with similar content:

Structure and Technology Problems of Semiconductor Film for Photovoltaic Devices
Telecommunications and Radio Engineering, Vol.55, 2001, issue 4
P.A. Panchekha
IMPROVING POLYMER PROCESSING TROUGH HEAT TRANSFER MASTERY: A NEW CHALLENGE
International Heat Transfer Conference 13, Vol.0, 2006, issue
D. Delaunay
AMINO-FUNCTIONALIZED ACTIVATED CARBON MATERIALS IN BASE-CATALYZED REACTIONS
Catalysis in Green Chemistry and Engineering, Vol.1, 2018, issue 2
Radha V. Jayaram, Sonali C. Thakare
ADJUSTABLE THREMAL RESISTOR BY REVERSIBLY FOLDING A GRAPHENE SHEET
International Heat Transfer Conference 16, Vol.19, 2018, issue
Zhan Peng, Nuo Yang, Jianfeng Zang, Meng An, Xiandong Chen, Qichen Song
Molecular Dynamics Study on Influences of Surface Structural Characteristics on Thermal Energy Transport over Liquid-Solid Interfaces
International Heat Transfer Conference 15, Vol.29, 2014, issue
Ryohei Toda, Masahiko Shibahara, Sho Murakami, Taku Ohara