Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
International Journal for Multiscale Computational Engineering
Fator do impacto: 1.016 FI de cinco anos: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Imprimir: 1543-1649
ISSN On-line: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2019026164
pages 507-527


Mahmoud S. Rawashdeh
Jordan University of Science and Technology, Irbid, Jordan, 22110
Amer H. Darweesh
Jordan University of Science and Technology, Irbid, Jordan, 22110


In this work, we propose a new approach to find exact solutions to systems of linear fractional partial differential equations (PDEs) using the Fractional Natural Decomposition Method (FNDM). We were be able to find exact solutions for different values of α and β, specifically when α = β = 1, 3/4, 1/2, and 1/4. To the best of our knowledge, we are the first to find such exact solutions for the proposed systems. We employ the FNDM to obtain approximate numerical solutions for two systems of fractional linear PDEs. The FNDM is investigated for these systems of equations and is calculated in the form of power series. The numerical computations in the tables show that our analytical solutions converge very rapidly to the exact solutions.


  1. Ahmed, H., Bahgat, M.S., and Zaki, M., Numerical Approaches to System of Fractional Partial Differential Equations, J. Egypt. Math. Soc., vol. 25, no. 2, pp. 141-150,2017.

  2. Al-Rabtah, A., Momani, S., and Ramadan, M.A., Solving Linear and Nonlinear Differential Equations Using Spline Functions, Abstract Appl. Anal., vol. 2012, pp. 1-9,2012.

  3. Arfken, G.B. and Weber, H.J., Mathematical Methods for Physicists, San Diego, CA: Academic Press, 1999.

  4. Belgacem, F. and Silambarasan, R., Theoretical Investigations of the Natural Transform, Prog. Electromag. Res. Symp. Proc, Suzhou, China, pp. 12-16,2011.

  5. Belgacem, F.B.M. and Silambarasan, R., Maxwell's Equations Solutions by Means of the Natural Transform, Int. J. Math. Eng. Sci. Aeorospace, vol. 3, no. 3, pp. 313-323,2012.

  6. Caputo, M. and Mainardi, F., Linear Models of Dissipation in Anelastic Solids, Rivista del Nuovo Cimento, vol. 1, no. 3, pp. 161-168,1971.

  7. Caputo, M., Linear Models of Dissipation Whose q is Almost Frequency Independent. Part II, J. R. Austral. Soc., vol. 13, pp. 529-539,1967.

  8. Caputo, M., Elasticitae Dissipazione, Bologna, Italy: Zanichelli, 1969.

  9. Garg, M. and Sharma, A.K., Solution of Space-Time Fractional Telegraph Equation by Adomian Decomposition Method, J. Inequalities Spec. Funct., vol. 1, no. 2, pp. 1-7,2011.

  10. Garg, M. and Manohar, P., Numerical Solution of Fractional Diffusion-Wave Equation with Two Space Variables by Matrix Method, Fractional Calculus Appl. Anal., vol. 13, no. 2, pp. 191-207,2010.

  11. He, J.H., Approximate Analytical Solution for Seepage Flow with Fractional Derivatives in Porous Media, Comput. Methods Appl. Mech. Eng., vol. 167, nos. 1-2, pp. 57-68,1998.

  12. Hilfer, R., Applications of Fractional Calculus in Physics, Singapore: World Scientific, 2000.

  13. Jafari, H., Nazari, M., Baleanu, D., and Khalique, C.M., A New Approach for Solving a System of Fractional Partial Differential Equations, Comput. Math. Appl., vol. 66, no. 5, pp. 838-843,2013.

  14. Jafari, H. and Seifi, S., Solving a System of Nonlinear Fractional Partial Differential Equations Using Homotopy Analysis Method, Commun. Nonlinear Sci. Numer. Simul., vol. 14, no. 5, pp. 1962-1969,2009.

  15. Karbalaie, A., Montazeri, M.M., and Muhammed, H.H., New Approach to Find the Exact Solution of Fractional Partial Differential Equation, WSEAS Trans. Math, vol. 11, no. 10, pp. 908-917,2012.

  16. Katatbeh, Q. and Belgacem, F., Applications of the Sumudu Transform to Fractional Differential Equations, Nonlinear Studies, vol. 16, no. 1,pp. 99-112,2011.

  17. Kazem, S., Exact Solution of Some Linear Fractional Differential Equations by Laplace Transform, J. Nonlinear Sci., vol. 16, no. 1,pp. 3-11,2013.

  18. Khan, Z.H. and Khan, W.A., N-Transform Properties and Applications, NUSTJ. Eng. Sci, vol. 1, no. 1, pp. 127-133,2008.

  19. Kilbas, A.A.A., Srivastava, H.M., and Trujillo, J.J., Theory and Applications of Fractional Differential Equations, vol. 204, Amsterdam, The Netherlands: Elsevier Science Limited, 2006.

  20. Kumar, D., Singh, J., andKilicman, A., An Efficient Approach for Fractional Harry Dym Equation by Using Sumudu Transform, Abstract Appl. Anal., vol. 2013,2013.

  21. Li, Z.B., An Extended Fractional Complex Transform, Int. J. Nonlinear Sci. Numer. Simul., vol. 11, pp. 335-338,2010.

  22. Miller, K. and Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations, New York: Wiley, 1993.

  23. Mittag-Leffler, G., Sur la Nouvelle Fonction Ea(x), CR Acad. Sci. Paris, vol. 137, no. 2, pp. 554-558,1903.

  24. Podlubny, I., Fractional Differential Equations, Mathematics in Science and Engineering, New York: Academic Press, 1999.

  25. Rawashdeh, M., A New Approach to Solve the Fractional Harry Dym Equation Using the FRDTM, Int. J. Pure Appl. Math, vol. 4, pp. 553-566,2014.

  26. Rawasbdeh, M., An Efficient Approach for Time-Fractional Damped Burger and Time-Sharma-Tasso-Olver Equations Using the FRDTM, Appl. Math. Information Sci., vol. 3, p. 1239,2015.

  27. Rawashdeh, M., The Fractional Natural Decomposition Method: Theories and Applications, Math. Methods Appl. Sci., vol. 7, pp. 2362-2376,2017a.

  28. Rawashdeh, M., A Reliable Method for the Space-Time Fractional Burgers and Time-Fractional Cahn-Allen Equations via the FRDTM, Adv. Diff. Eqs, vol. 1, p. 99,2017b.

  29. Rawashdeh, M. and Al-Jammal, New Approximate Solutions to Fractional Nonlinear Systems of Partial Differential Equations Using the FNDM, AdK Diff. Eqs., vol. 6, p. 235,2016a.

  30. Rawashdeh, M. and Al-Jammal, Numerical Solutions for Systems of Nonlinear Fractional Ordinary Differential Equations Using the FNDM, Mediterranean J. Math., vol. 6, pp. 4661-4677,2016b.

  31. Ray, S. and Bera, R., An Approximate Solution of a Nonlinear Fractional Differential Equation by Adomian Decomposition Method, Appl. Mathemat. Comput, vol. 1, pp. 561-571,2005.