Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
International Journal for Multiscale Computational Engineering
Fator do impacto: 1.016 FI de cinco anos: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Imprimir: 1543-1649
ISSN On-line: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2015015486
pages 507-531

INTERACTIONS BETWEEN MULTIPLE ENRICHMENTS IN EXTENDED FINITE ELEMENT ANALYSIS OF SHORT FIBER REINFORCED COMPOSITES

Matthew G. Pike
Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
Mason A. Hickman
Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
Caglar Oskay
Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA

RESUMO

This manuscript presents an extended finite element method (XFEM) approach to capture the interactions between fibers in short fiber reinforced composites. Short fiber inclusions are incorporated into the XFEM framework as deformable elastic zero measure objects. Two separate enrichment functions are employed to account for both the presence of fibers within the composite domain and to idealize the progressive debonding along fiber matrix interfaces. This study investigates the accuracy characteristics of the formulation when multiple fiber enrichments and interface debonding enrichments lie within a single element. Accurately capturing multiple enrichments in a single element is particularly important for modeling the failure process of fiber reinforced composites with a significant amount of discontinuous fibers with high aspect ratios. The performance of the proposed XFEM model is assessed by comparing model predictions to the direct finite element method for various interacting fiber configurations. The numerical verification studies indicated that the proposed model displays high accuracy and captures the debonding interactions at fiber-matrix interfaces.


Articles with similar content:

HOMOGENIZATION OF MATERIALS HAVING INCLUSIONS SURROUNDED BY LAYERS MODELED BY THE EXTENDED FINITE ELEMENT METHOD
International Journal for Multiscale Computational Engineering, Vol.11, 2013, issue 3
Haim Waisman, Erez Gal, E. Suday
OVERALL ELASTIC PROPERTIES OF POLYSILICON FILMS: A STATISTICAL INVESTIGATION OF THE EFFECTS OF POLYCRYSTAL MORPHOLOGY
International Journal for Multiscale Computational Engineering, Vol.9, 2011, issue 3
Roberto Martini, Alberto Corigliano, Stefano Mariani, Marco Beghi, Aldo Ghisi
Macroscopic Constitutive Law for Mastic Asphalt Mixtures from Multiscale Modeling
International Journal for Multiscale Computational Engineering, Vol.8, 2010, issue 1
Michal Sejnoha, Jan Zeman, Richard Valenta
Three-Dimensional Finite Element Modeling for Concrete Materials Using Digital Image and Embedded Discontinuous Element
International Journal for Multiscale Computational Engineering, Vol.4, 2006, issue 4
Takahiro Yamada, Gakuji Nagai
Enhancement of the Thermal Conductivity of Composites Reinforced with Anisotropic Short Fibers
Journal of Enhanced Heat Transfer, Vol.13, 2006, issue 1
Manuel Ernani C. Cruz, Carlos Frederico Matt