Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
International Journal for Multiscale Computational Engineering
Fator do impacto: 1.016 FI de cinco anos: 1.194 SJR: 0.554 SNIP: 0.82 CiteScore™: 2

ISSN Imprimir: 1543-1649
ISSN On-line: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2019028866
pages 239-260


Irena Jaworska
Institute for Computational Civil Engineering, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland


This article is an introduction to the numerical homogenization of the heterogeneous material with periodic structure by the new Multipoint solution approach−a higher order extension of the Meshless Finite Difference Method (MFDM). The recently developed Multipoint method follows the original Collatz higher order concept and the essential idea of the MFDM−the moving weighted least squares approximation, using the arbitrarily irregular cloud of nodes as well as various formulations of boundary value problems. The method improves the former procedure without the necessity of providing additional unknowns to both the mesh and the MFD operator. The Multipoint meshless method, like the MFDM, may be used at the macro and the micro levels in the two-scale analysis of heterogeneous materials based on the single Representative Volume Element (RVE). The analysis of the convergence of the effective material parameters for the set of meshes was conducted and compared with the FEM. The error analysis at the micro and macro level confirm the high quality of the Multipoint solution, which may also be used as the improved reference solution instead of the true analytical one for the a posteriori error estimation.


  1. Atluri, S.N. and Shen, S., The Meshless Local Petrov-Galerkin (MLPG) Method, Los Angeles, CA: Tech Science Press, 2002.

  2. Cecot, W., Homogenizacja Obliczeniowa z Zastosowaniem Adaptacyjnej Metody Elementow Skotrczonych, Krakow, Poland: Wydaw, 2013.

  3. Cecot, W., Adaptive FEM Analysis of Selected Elastic-Viscoplastic Problems, Comput. Methods Appl. Mech. Eng., vol. 196, pp. 3859-3870, 2007.

  4. Cecot, W., Serafin, M., Jaworska, I., Klimczak, M., Milewski, S., and Rachowicz, W., Multiscale Modeling of Inelastic Heterogeneous Materials with Hp-Adaptive Finite Element Method, Kracow, Poland, CUT, Rep. 3697/B/T02/2008/34, 2010.

  5. Collatz, L., Numerische Behandlung von Differential-Gleichungen, Berlin: Springer, 1955.

  6. Demkowicz, L., Computing with Hp-Adaptive Finite Elements. One- and Two-Dimensional Elliptic and Maxwell Problems, vol. 1, London: Chapman & Hall/CRC, 2006.

  7. Fish, J., Practical Multiscaling, London: Wiley, 2013.

  8. Fish, J. and Yuan, Z., Multiscale Enrichment based on Partition of Unity, Int. J. Numer. Meth. Eng., vol. 62, pp. 1341-1359,2005.

  9. Geers, M.G.D., Kouznetsova, V.G., and Brekelmans, W.A.M., Multi-Scale First-Order and Second-Order Computational Homogenization of Microstructures towards Continua, Int. J. Multiscale Comput. Eng., vol. 1, no. 4, pp. 371-385, 2003.

  10. Hasanov, S. and Huet, C., Order Relationships for Boundary Conditions Effect in Heterogeneous Bodies Smaller than the Representative Volume, J. Mech. Phys. Solids, vol. 42, pp. 1995-2011, 1994.

  11. Hill, R., The Essential Structure of Constitutive Laws for Metal Composites and Polycrystals, J. Mechan. Phys. Solids, vol. 15, pp. 79-95, 1967.

  12. Jaworska, I., On the Ill-Conditioning in the New Higher Order Multipoint Method, Comput. Math. Appl., vol. 66, no. 3, pp. 238-249,2013.

  13. Jaworska, I., On Some Aspects of the Meshless FDM Application for the Heterogeneous Materials, Int. J. Multiscale Comput. Eng., vol. 15, no. 4, pp. 359-378, 2017.

  14. Jaworska, I. and Milewski, S., On Two-Scale Analysis of Heterogeneous Materials by Means of the Meshless Finite Difference Method, Int. J. Multiscale Comput. Eng., vol. 14, no. 2, pp. 113-134,2016.

  15. Jaworska, I. and Orkisz, J., Higher Order Multipoint Method-From Collatz to Meshless FDM, Eng. Anal. Bound. Elem., vol. 50, pp. 341-351,2015.

  16. Jaworska, I. and Orkisz, J., Estimation of a Posteriori Computational Error by the Higher Order Multipoint Meshless FDM, Comp. Informat., vol. 36, pp. 1447-1466, 2017.

  17. Kouznetsova, V.G., Brekelmans, W.A.M., and Baaijens, F.P.T., An Approach to Micro-Macro Modeling of Heterogeneous Materials, Comput. Mech., vol. 27, no. 1, pp. 37-48, 2001.

  18. Rrowczynski, M. and Cecot, W., A Fast Three-Level Upscaling for Short Fiber-Reinforced Composites, J. Multiscale Comput. Eng., vol. 15, no. 1,pp. 19-34,2017.

  19. Liszka, T. and Orkisz, J., Finite Difference Method for Arbitrary Irregular Meshes in Nonlinear Problems of Applied Mechanics, Structural Mechan. Reactor Technol., 1977.

  20. Madej, L., Hodgson, P.D., and Pietrzyk, M., Development of the Multi-Scale Analysis Model to Simulate Strain Localization Occurring during Material Processing, Arch. Comput. Methods Eng., vol. 16, pp. 287-318, 2009.

  21. Miehe, C. and Koch, A., Computational Micro-to-Macro Transitions of Discretized Microstructures Undergoing Small Strains, Arch. Appl. Mech., vol. 72, pp. 300-317,2002.

  22. Lukkassen, D., Persson, L., and Wall, P, Some Engineering and Mathematical Aspects on the Homogenization Method, Comp. Eng., vol. 5, pp. 519-531,1995.

  23. Oleksy, M. and Cecot, W., Application of Hp-Adaptive Finite Element Method to Two-Scale Computation, Arch. Comput. Methods Eng., vol. 22, no. 1, pp. 105-134, 2015.

  24. Orkisz, J., Finite Difference Method (Part III), in Handbook of Computational Solid Mechanics, M. Kleiber, Ed., Berlin: Springer- Verlag, pp. 336-431,1998.

  25. Zohdi, T.I. and Wriggers, P, An Introduction to Computational Micromechanics, in Lecture Notes in Applied and Computational Mechanics, vol. 20, Springer, 2008.

Articles with similar content:

Coarse Implicit Time Integration of a Cellular Scale Particle Model for Plant Tissue Deformation
International Journal for Multiscale Computational Engineering, Vol.8, 2010, issue 4
P. Ghysels, P. Van Liedekerke, H. Ramon, E. Tijskens, D. Roose, G. Samaey
Calibration of a Nonlinear Elastic Composite With Goal-Oriented Error Control
International Journal for Multiscale Computational Engineering, Vol.3, 2005, issue 3
Hakan Johansson, Kenneth Runesson, Fredrik Larsson
Estimation of Effective Elastic Properties of Random Structure Composites for Arbitrary Inclusion Shape and Anisotropy of Components Using Finite Element Analysis
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 1
Valeriy A. Buryachenko, G. P. Tandon
International Journal for Uncertainty Quantification, Vol.7, 2017, issue 5
Ivana Pultarová
International Journal for Multiscale Computational Engineering, Vol.15, 2017, issue 4
Irena Jaworska