Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
International Journal for Multiscale Computational Engineering
Fator do impacto: 1.016 FI de cinco anos: 1.194 SJR: 0.452 SNIP: 0.68 CiteScore™: 1.18

ISSN Imprimir: 1543-1649
ISSN On-line: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2012002781
pages 581-597

GRADIENT-DEPENDENT CONSTITUTIVE LAWS FOR A MODEL OF MICROCRACKED BODIES

Malika Bongue Boma
Department of Mechanical and Manufacturing Engineering, University of Calgary
Les Sudak
Department of Mechanical and Manufacturing Engineering, University of Calgary
Salvatore Federico
Department of Mechanical and Manufacturing Engineering, University of Calgary

RESUMO

The aim of this paper is to propose nonlocal constitutive laws for a model of microcracked bodies. To do so, we use a multiscale approach: we call macroscopic the description in which the body is considered as a continuum and we refer to the microscopic scale when a crack is studied at a closer view. We first propose an approximation of the stress and strain fields in the vicinity of a crack, considering the neighboring discontinuities. We then use equivalence principles between micro- and macroscopic scales in order to determine the expression of the macroscopic constitutive assignments of the body. The latter are written not only in terms of the local values of the deformation and the local values of the geometrical variables representative of the crack field, but also in terms of their gradients. Numerical implementations are performed; we compare constitutive laws obtained from local and nonlocal approaches.

Referências

  1. Bazant, Z. P., Why continuum damage is non-local: micromechanical arguments. DOI: 10.1061/(ASCE)0733-9399(1991)117:5(1070)

  2. Bazant, Z. P. and Jirasek, M., Nonlocal integral formulations of plasticity and damage: Survey of progress. DOI: 10.1061/(ASCE)0733-9399(2002)128:11(1119)

  3. Bongue Boma, M., Modélisation de la fissuration pour l'évaluation de la perte d'étanchéité des structures en béton armé sous chargements mécaniques.

  4. Bongue-Boma, M. and Brocato, M., Liquids with vapour bubbles. DOI: 10.1016/j.camwa.2007.04.006

  5. Bongue Boma, M. and Brocato, M., A continuum model of micro-cracks in concrete. DOI: 10.1007/s00161-009-0130-4

  6. Bui, H.-D., Mécanique de la Rupture Fragile.

  7. Capriz, G., Continua with Microstructure.

  8. Cosserat, E. and Cosserat, F., Théorie des corps déformables.

  9. de Borst, R., Pamin, J., Peerlings, R., and Sluys, B., On gradient enhanced damage and plasticity models for failure in quasi brittle and frictional materials. DOI: 10.1007/BF00356485

  10. Denarie, E., Etude expérimentale des couplages viscoélatsicité-croissances des fissures dans les bétons de ciment. DOI: 10.5075/epfl-thesis-2195

  11. Edelen, D. G. B., Green, A., and Laws, N., Nonlocal continuum mechanics. DOI: 10.1007/BF00251544

  12. Epstein, M. and de Leon, M., Geometrical theory of uniform cosserat media. DOI: 10.1016/S0393-0440(97)00042-9

  13. Grassl, P. and Jirasek, M., Damage-plastic model for concrete failure. DOI: 10.1016/j.ijsolstr.2006.06.032

  14. Kachanov, L. M., Time of the rupture process under creep conditions.

  15. Kratzig, W. B. and Polling, R., An elasto-plastic damage model for reinforced concrete with minimum number of material parameters. DOI: 10.1016/j.compstruc.2004.03.002

  16. Maugin, G. A., Internal variables and dissipative structures. DOI: 10.1515/jnet.1990.15.2.173

  17. Mazars, J., Application de la Mécanique de lendommagement au comportement non linéaire et à la rupture du béton de structure.

  18. Mazars, J., A description of micro- and macroscale damage of concrete structures. DOI: 10.1016/0013-7944(86)90036-6

  19. Nguyen, G. D., A thermodynamic approach to non-local damage modelling of concrete. DOI: 10.1016/j.ijsolstr.2007.11.001

  20. Santaoja, K., Gradient theory from the thermomechanics point of view. DOI: 10.1016/S0013-7944(03)00038-9

  21. Simonin, F., Comportement thermomécanique de bétons réfractaires alumineux contenant du spinelle de magnésium.

  22. Ward, M. A. and Cook, D. J., The mechanism of tensile creep in concrete. DOI: 10.1680/macr.1969.21.68.151


Articles with similar content:

Multiscale Modeling of Composite Materials by a Multifield Finite Element Approach
International Journal for Multiscale Computational Engineering, Vol.3, 2005, issue 4
Patrizia Trovalusci, V. Sansalone, F. Cleri
APPLICATION OF THE MULTISCALE FEM TO THE DETERMINATION OF MACROSCOPIC DEFORMATIONS CAUSED BY DISSOLUTION PRECIPITATION CREEP
International Journal for Multiscale Computational Engineering, Vol.14, 2016, issue 2
Klaus Hackl, Sandra Klinge
MULTISCALE PARAMETER IDENTIFICATION
International Journal for Multiscale Computational Engineering, Vol.10, 2012, issue 4
Paul Steinmann, Julia Mergheim, Ulrike Schmidt
Generalized Mathematical Homogenization of Atomistic Media at Finite Temperatures
International Journal for Multiscale Computational Engineering, Vol.3, 2005, issue 4
Yuye Tang, Wen Chen, Jacob Fish
Multiscale Total Lagrangian Formulation for Modeling Dislocation-Induced Plastic Deformation in Polycrystalline Materials
International Journal for Multiscale Computational Engineering, Vol.4, 2006, issue 1
Jiun-Shyan Chen, Nasr M. Ghoniem, Xinwei Zhang, Shafigh Mehraeen