Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
International Journal for Multiscale Computational Engineering
Fator do impacto: 1.016 FI de cinco anos: 1.194 SJR: 0.554 SNIP: 0.82 CiteScore™: 2

ISSN Imprimir: 1543-1649
ISSN On-line: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2019029958
pages 103-128

ON THE NECKING OF GRAPHENE NANOSTRUCTURES

H. Aminpour
Università degli Studi Roma Tre, Via della Madonna dei Monti, 40 00184 Roma, Italy
Nicola Luigi Rizzi
Università degli Studi Roma Tre, Via della Madonna dei Monti, 40 00184 Roma, Italy

RESUMO

A 1D continuum model endowed with internal structure is proposed as a coarse descriptor of the necking of graphene nanostructures under tension, in the nonlinear elasticity framework. For the sake of simplicity, the analysis is performed with reference to a graphene sheet but the procedure can be applied, as it stands, to other 2D graphene nanostructures like nanoribbons or nanotubes. A representative elementary volume (REV) which includes two atoms and five C-C bonds is chosen at the nano scale for both the armchair and zigzag carbon atoms' arrangements. The modified Morse potential is employed for describing the interatomic actions. The strain energy density of the REV is first given in terms of nanoscopic strain measures. Then it is expressed as a function of the continuum strain measures by assuming suitable relationships between the discrete and the continuum kinematics. The procedure leads to the definition of a 1D continuum equivalent to the given graphene sheet. The constitutive functions for the 1D stresses are obtained by making the derivative of the strain energy with respect to its arguments. Using the linear approximation of the constitutive functions, the pure tension stress state is examined and the elastic stiffness of the graphene sheet determined. Then the case of a straight beam subjected to an axial end displacement is examined. At first, a trivial solution is determined both for armchair and zigzag carbon atoms' arrangements. A perturbation analysis is performed to obtain the first bifurcation point on the trivial equilibrium path, together with the initial tangent to the bifurcated path. A peculiar postbuckling behavior is detected and commented.

Referências

  1. Aminpour, H. and Rizzi, N.L., A One-Dimensional Continuum with Microstructure for Single-Wall Carbon Nanotubes Bifurcation Analysis, Math. Mech. Solids, vol. 21, pp. 168-181, 2016a.

  2. Aminpour, H. and Rizzi, N.L., On the Modelling of Carbon Nano Tubes as Generalized Continua, in Generalized Continua as Models for Classical and Advanced Materials, Cham, Switzerland: Springer International Publishing, 2016b.

  3. Aminpour, H., Rizzi, N.L., and Salerno, G., A One-Dimensional Beam Model for Single-Wall Carbon Nanotube Column Buckling, Proc. the 12th Int. Conf. on Computational Structures Technology, Vol. 106,2014.

  4. Androulidakis, C., Tsoukleri, G., Koutroumanis, N., Gkikas, G., Pappas, P., Parthenios, J., Papagelis, K., and Galiotis, C., Experimentally Derived Axial Stress Strain Relations for Two-Dimensional Materials such as Monolayer Graphene, Carbon, vol. 81, pp. 322-328,2015.

  5. Ansari, R., Mirnezhad, M., and Sahmani, S., An Accurate Molecular Mechanics Model for Computation of Size-Dependent Elastic Properties of Armchair and Zigzag Single-Walled Carbon Nanotubes, Meccanica, vol. 48, pp. 1355-1367, 2013.

  6. Antman, S., Nonlinear Problems of Elasticity, in Applied Mathematical Sciences, Vol. 107, New York: Springer, 2005.

  7. Baykasoglu, C. andMugan, A., Nonlinear Fracture Analysis of Single-Layer Graphene Sheets, Eng. Fract. Mech, vol. 96, pp. 241-250,2012.

  8. Belytschko, T., Xiao, S., Schatz, G., and Ruoff, R., Atomistic Simulations of Nanotube Fracture, Phys. Rev. B, vol. 65, p. 235430, 2002.

  9. Berinskii, I.E. and Borodich, F.M., Elastic In-Plane Properties of 2D Linearized Models of Graphene, Mech. Mater, vol. 62, pp. 60-68,2013.

  10. Budiansky, B., Theory of Buckling and Postbuckling Behavior of Elastic Structures, in Advances in Applied Mechanics, Vol. 14, New York: Academic Press, 1974.

  11. Chang, T. and Gao, H., Size-Dependent Elastic Properties of a Single-Walled Carbon Nanotube via a Molecular Mechanics Model, J. Mech. Phys. Solids, vol. 51, pp. 1059-1074, 2003.

  12. Chavez-Castillo, M.R., Rodriguez-Meza, M.A., and Meza-Montes, L., Size, Vacancy and Temperature Effects on Young's Modulus of Silicene Nanoribbons, RSC Adv., vol. 5, pp. 96052-96061, 2015.

  13. Civalek, O., Elastic Buckling Behavior of Skew Shaped Single-Layer Graphene Sheets, Thin Solid Films, vol. 550, pp. 450-458, 2014.

  14. Dai, H.H., Hao, Y., and Chen, Z., On Constructing the Analytical Solutions for Localizations in a Slender Cylinder Composed of an Incompressible Hyperelastic Material, Int. J. Solids Struct., vol. 45, pp. 2613-2628,2008.

  15. Fan, N., Ren, Z., Jing, G., Guo, J., Peng, B., and Jiang, H., Numerical Investigation of the Fracture Mechanism of Defective Graphene Sheets, Mater, vol. 10, p. 164, 2017.

  16. Faria, B., Silvestre, N., and Canongia Lopes, J., Induced Anisotropy of Chiral Carbon Nanotubes under Combined Tension-Twisting, Mech. Materials, vol. 58, pp. 97-109, 2013.

  17. Genoese, A., Genoese, A., Rizzi, N.L., and Salerno, G., On the Derivation of the Elastic Properties of Lattice Nanostructures: The Case of Graphene Sheets, Compos. PartB-Eng., vol. 115, pp. 316-329, 2017.

  18. Genoese, A., Genoese, A., Rizzi, N.L., and Salerno, G., On the In-Plane Failure and Post-Failure Behaviour of Pristine and Perforated Single-Layer Graphene Sheets, Math. Mech. Solids, vol. 24, no. 11, pp. 3418-3443, 2019.

  19. Genoese, A., Genoese, A., and Salerno, G., Elastic Constants of Achiral Single-Wall CNTS: Analytical Expressions and a Focus on Size and Small Scale Effects, Compos. PartB-Eng., vol. 147, pp. 207-226, 2018.

  20. Georgantzinos, S.K., Giannopoulos, G.I., and Anifantis, N., Numerical Investigation of Elastic Properties of Graphene Structures, Mater. Design, vol. 31, pp. 4646-4654, 2010.

  21. Georgantzinos, S.K., Katsareas, D.E., and Anifantis, N.K, Graphene Characterization: A Fully Non-Linear Spring-Based Finite Element Prediction, Phys. E, vol. 43, pp. 1833-1839,2011.

  22. Georgantzinos, S., Giannopoulos, G., Katsareas, D.,Kakavas, P., and Anifantis, N., Size-Dependent Non-Linear Mechanical Properties of Graphene Nanoribbons, Comput. Mater. Sci., vol. 50, no. 7, pp. 2057-2062, 2011.

  23. Ghaffari, R., Duong, T.X., and Sauer, R.A., A New Shell Formulation for Graphene Structures based on Existing Ab-Initio Data, Int. J. Solids Struct, vol. 135, pp. 37-60, 2018.

  24. Hartmann, M.K., Todt, M., Rammerstorfer, F.G., Fischer, F.D., and Paris, O., Elastic Properties of Graphene Obtained by Computational Mechanical Tests, Europhys. Lett., vol. 103, no. 68004, 2013.

  25. Hossain, M.Z., Hao, T., and Silverman, B., Stillinger-Weber Potential for Elastic and Fracture Properties in Graphene and Carbon Nanotubes, J. Phys. Condens. Matter., vol. 30, p. 055901, 2018.

  26. Kalosakas, G., Lathiotakis, N.N., Galiotis, C., and Papagelis, K., In-Plane Force Fields and Elastic Properties of Graphene, J. Appl. Phys, vol. 113, p. 134307,2013.

  27. Korobeynikov, S.N., Alyokhin, V. V., and Babichev, A.V., Simulation of Mechanical Parameters of Graphene Using the DREIDING Force Field, Acta Mech, vol. 229, pp. 2343-2378,2018.

  28. Kudin, K.N., Scuseria, G.E., and Yakobson, B.I., C2F, BN, and C Nanoshell Elasticity from Ab-Initio Computations, Phys. Rev. B, vol. 64, p. 235406,2001.

  29. Kuilla, T., Bhadra, S., Yao, D., Kim, N.H., Bose, S., and Lee, J.H., Recent Advances in Graphene based Polymer Composites, Prog. Polym. Sci., vol. 35, no. 11, pp. 1350-1375, 2010.

  30. Leamy, M.J., Bulk Dynamic Response Modeling of Carbon Nanotubes Using an Intrinsic Finite Element Formulation Incorporating Interatomic Potentials, Int. J. Solids Struct., vol. 44, nos. 3-4, pp. 874-894, 2007.

  31. Lee, C., Wei, X., Kysar, J., and Hone, J., Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science, vol. 321, pp. 385-388, 2008.

  32. Liu, F., Ming, P., and Li, J., Ab-Initio Calculation of Ideal Strength and Phonon Instability of Graphene under Tension, Phys. Rev. B, vol. 76, p. 064120, 2007.

  33. Lu, X. and Hu, Z., Mechanical Property Evaluation of Single-Walled Carbon Nanotubes by Finite Element Modeling, Compos. PartB-Eng., vol. 43, pp. 1902-1913, 2012.

  34. Marianetti, C.A. and Yevick, H.G., Failure Mechanisms of Graphene under Tension, Phys. Rev. Lett., vol. 105, p. 245502, 2010.

  35. Mathematica, Version 10.3, Wolfram Research, Inc., 2015.

  36. Meo, M. and Rossi, M., Tensile Failure Prediction of Single Wall Carbon Nanotube, Eng. Fract. Mech, vol. 73, pp. 2589-2599, 2006.

  37. Mohammadi, H., Mahzoon, M., Mohammadi, M., and Mohammadi, M., Postbuckling Instability of Nonlinear Nanobeam with Geometric Imperfection Embedded in Elastic Foundation, Nonlinear Dyn., vol. 76, pp. 2005-2016,2014.

  38. Ni, Z., Bu, H., Zou, M., Yi, H., Bi, K., and Chen, Y., Anisotropic Mechanical Properties of Graphene Sheets from Molecular Dynamics, Phys. B: Condens. Matter., vol. 405, no. 5, pp. 1301-1306, 2010.

  39. Ragab, T. and Basaran, C., A Framework for Stress Computation in Single-Walled Carbon Nanotubes under Uniaxial Tension, Comput. Mater. Sci., vol. 46, pp. 1135-1143,2009.

  40. Rappe, A.K., Casewit, C.J., Colwell, K.S., Goddard III, W.A., and Skiff, W.M., UFFA Rule-Based Full Periodic Table Force Field for Molecular Mechanics and Molecular Dynamics Simulations, J. Am. Chem. Soc., vol. 114, pp. 10024-10035, 1992.

  41. Rossi, M. and Meo, M., On the Estimation of Mechanical Properties of Single-Walled Carbon Nanotubes by Using a Molecular-Mechanics based FE Approach, Compos. Sci. Technol., vol. 69, pp. 1394-1398,2009.

  42. Ru, C., Chirality-Dependent Mechanical Behavior of Carbon Nanotubes based on an Anisotropic Elastic Shell Model, Math. Mech. Solids, vol. 14, pp. 88-101, 2009.

  43. Saavedra Flores, E.I., Ajaj, R.M., Adhikari, S., Dayyani, I., Friswell, M.I., and Castro-Triguero, R., Hyperelastic Tension of Graphene, Appl. Phys. Lett., vol. 106, p. 061901, 2015.

  44. Saito, R., Dresselhaus, G., and Dresselhaus, M.S., Physical Properties of Carbon Nanotubes, Imperial College Press, 1998.

  45. Sakhaee-Pour, A., Elastic Properties of Single-Layered Graphene Sheet, Solid State Commun., vol. 149, pp. 91-95,2009.

  46. Sakharova, N.A., Pereira, A.F.G., Antunes, J.M., Brett, C.M.A., and Fernandes, J.V., Mechanical Characterization of Single-Walled CarbonNanotubes: Numerical Simulation Study, Compos. PartB-Eng., vol. 75, pp. 73-85, 2015.

  47. Savvas, D. and Stefanou, G., Determination of Random Material Properties of Graphene Sheets with Different Types of Defects, Compos. Part B-Eng, vol. 143, pp. 47-54,2018.

  48. Sengupta, R., Bhattacharya, M., Bandyopadhyay, S., and Bhowmick, A., A Review on the Mechanical and Electrical Properties of Graphite and Modified Graphite Reinforced Polymer Composites, Prog. Polym. Sci., vol. 36, pp. 638-670, 2011.

  49. Shokrieh, M.M. and Rafiee, R., Prediction of Young's Modulus of Graphene Sheets and Carbon Nanotubes Using Nanoscale Continuum Mechanics Approach, Mater. Design, vol. 31, pp. 790-795,2010.

  50. Strozzi, M. and Pellicano, F., Linear Vibrations of Triple-Walled Carbon Nanotubes, Math. Mech. Solids, vol. 23, pp. 1456-1481, 2017.

  51. Topsakal, M. and Ciraci, S., Elastic and Plastic Deformation of Graphene, Silicene, and Boron Nitride Honeycomb Nanoribbons under Uniaxial Tension: A First-Principles Density-Functional Theory Study, Phys. Rev. B, vol. 81, p. 024107, 2010.

  52. Tvergaard, V., Needleman, A., and Lo, K.K., Flow Localization in the Plain-Strain Tensile Test, J. Mech. Phys. Solids, vol. 29, no. 2, pp. 115-142, 1981.

  53. VanLier, G., Van Alsenoy, C., VanDoren, V., and Geerlings, V., Ab-Initio Study of the Elastic Properties of Single-Walled Carbon Nanotubes and Graphene, Chem. Phys. Lett., vol. 326, pp. 181-185, 2000.

  54. Volokh, K. and Ramesh, K., An Approach to Multi-Body Interactions in a Continuum-Atomistic Context: Application to Analysis of Tension Instability in Carbon Nanotubes, Int. J. Solids Struct., vol. 43, pp. 7609-7627, 2006.

  55. Wang,L. and Zhang, Q., Elastic Behavior ofBilayer Graphene under In-Plane Loadings, Curr. Appl. Phys., vol. 12, no. 4, pp. 1005-1234,2012.

  56. Wen-Xing, B., Chang-Chun, Z., and Wan-Zhao, C., Simulation of Young's Modulus of Single-Walled Carbon Nanotubes by Molecular Dynamics, Phys. B, vol. 352, nos. 1-4, pp. 156-163, 2004.

  57. Wu, Y., Zhang, X., Leung, A., and Zhong, W., An Energy-Equivalent Model on Studying the Mechanical Properties of Single-Walled Carbon Nanotubes, Thin-Wall Struct., vol. 44, pp. 667-676, 2006.

  58. Xiang, Y. and Shen, H.S., Tension Buckling of Graphene: A New Phenotype, Solid State Commun., vol. 192, pp. 20-23, 2014.

  59. Xiao, J., Gamaa, B., and Gillespie Jr, J., An Analytical Molecular Structural Mechanics Model for the Mechanical Properties of Carbon Nanotubes, Int. J. Solids Struct., vol. 42, nos. 11-12, pp. 3075-3092,2005.

  60. Xiao, J.R., Staniszewski, J., and Gillespie, J.W., Fracture and Progressive Failure of Defective Graphene Sheets and Carbon Nanotubes, Compos. Struct., vol. 88, pp. 602-609, 2009.

  61. Young, R.J., Kinloch, I.A., Gong, L., andNovoselov, K.S., The Mechanics of Graphene Nanocomposites: A Review, Compos. Sci. Technol., vol. 72, pp. 1459-1476, 2012.

  62. Zacharias, G. and Lathiotakis, N.N., Graphene Allotropes under Extreme Uniaxial Strain: An Ab-Initio Theoretical Study, Phys. Chem. Chem. Phys, vol. 17, no. 25, 2015.

  63. Zhang, J., Ragab, T., and Basaran, C., Influence of Vacancy Defects on the Damage Mechanics of Graphene Nanoribbons, Int. J. Damage Mech, vol. 26, no. 1, pp. 29-49, 2017.

  64. Zhang, S. andZhu, T., Atomic Geometry and Energetics of Carbon Nanotube Necking, Philos. Mag. Lett., vol. 87, no. 8, pp. 567-574, 2007.

  65. Zhao, H., Min, K., and Aluru, N.R., Size and Chirality Dependent Elastic Properties of Graphene Nanoribbons under Uniaxial Tension, Nano Lett., vol. 9, no. 8, pp. 3012-3015, 2009.

  66. Zhao, S. and Xue, J., Mechanical Properties of Hybrid Graphene and Hexagonal Boron Nitride Sheets as Revealed by Molecular Dynamic Simulations, J. Phys. D: Appl. Phys, vol. 46, no. 13, p. 135303, 2013.


Articles with similar content:

Size of a Representative Volume Element in a Second-Order Computational Homogenization Framework
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 4
Marc Geers, W. A. M. Brekelmans, Varvara G. Kouznetsova
Breakdown of Self-Similar Hardening Behavior in Au Nanopillar Microplasticity
International Journal for Multiscale Computational Engineering, Vol.5, 2007, issue 3-4
Jaime Marian, Jaroslaw Knap
Softening Gradient Plasticity: Analytical Study of Localization under Nonuniform Stress
International Journal for Multiscale Computational Engineering, Vol.8, 2010, issue 1
Jan Zeman, Milan Jirasek, Jaroslav Vondrejc
Deformation and Energetic Tests for Optimization of Residual Stresses in Shells
Journal of Automation and Information Sciences, Vol.30, 1998, issue 4-5
D. G. Khlebnikov, I. A. Prokopishin
SIZE-DEPENDENT POSTBUCKLING OF ANNULAR NANOPLATES WITH DIFFERENT BOUNDARY CONDITIONS SUBJECTED TO THE AXISYMMETRIC RADIAL LOADING INCORPORATING SURFACE STRESS EFFECTS
International Journal for Multiscale Computational Engineering, Vol.14, 2016, issue 1
M. Faghih Shojaei, R. Ansari, V. Mohammadi, Raheb Gholami