Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
International Journal for Multiscale Computational Engineering
Fator do impacto: 1.016 FI de cinco anos: 1.194 SJR: 0.452 SNIP: 0.68 CiteScore™: 1.18

ISSN Imprimir: 1543-1649
ISSN On-line: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v8.i5.60
pages 509-522

Calibration of Nanocrystal Grain Boundary Model Based on Polycrystal Plasticity Using Molecular Dynamics Simulations

Sangmin Lee
Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI 48109, USA
Veera Sundararaghavan
University of Michigan

RESUMO

Decohesion parameters are computed for the tilt grain boundaries through molecular simulations and the parameters are employed in a elastoplastic deformation model of a face-centered-cubic nanocrystal. The calibrated continuum grain boundary model accounts for reversible elastic and irreversible inelastic separation sliding deformations. The intragranular plasticity was modeled using a rate-independent single-crystal plasticity model. Atomistic calculations are presented for a planar, copper grain boundary interface with a tilt lattice misorientation for cases of loading and unloading. The interface models are deformed to full separation and then relaxed to study inelastic behavior. Plots of stress versus displacement show a distinctly different deformation response between normal and tangential interface loading conditions. Two-dimensional microstructures uniaxially loaded using the calibrated cohesive model indicate that the macroscopically observed nonlinearity in the mechanical response is mainly due to the inelastic response of the grain boundaries. Plastic deformation in the interior of the grains prior to the initiation of grain boundary cracks was not observed. Although key features of the molecular simulation results have been introduced in the cohesive model, a few discrepancies between the behavior of cohesive model when compared to molecular simulations are noted.

Referências

  1. Anand, L. and Kothari, M., A computational procedure for rateindependent crystal plasticity. DOI: 10.1016/0022-5096(96)00001-4

  2. Asaro, R. J., Krysl, P., and Kad, B., Deformation mechanism transitions in nanoscale fcc metals. DOI: 10.1080/09500830310001614540

  3. Camacho, G. T. and Ortiz, M., Adaptive Lagrangian modelling of ballistic penetration of metallic targets. DOI: 10.1016/S0045-7825(96)01134-6

  4. Cleri, F., Yip, S., Wolf, D., and Phillpot, S. R., Atomic-scale mechanism of crack-tip plasticity: Dislocation nucleation and crack-tip shielding. DOI: 10.1103/PhysRevLett.79.1309

  5. Cleri, F., Phillpot, S. R., Wolf, D., and Yip, S., Atomistic simulations of materials fracture and the link between atomic and continuum length scales. DOI: 10.1111/j.1151-2916.1998.tb02368.x

  6. Daw, M. S., Foiles, S. M., and Baskes, M. I., The embedded atom method: A review of theory and applications. DOI: 10.1016/0920-2307(93)90001-U

  7. Fu, H.-H., Benson, D. J., and Meyers, M. A., Computational description of nanocrystalline deformation based on crystal plasticity. DOI: 10.1016/j.actamat.2004.05.036

  8. Gall, K., Iesulauro, E., Hui, H., and Ingraffea, A., Atomistic and continuum based fracture modeling in single crystal silicon.

  9. Gertsman, V. Y., Birringer, R., Valiev, R. Z., and Gleiter, H., On the structure and strength of ultrafine grained copper produced by severe plastic deformation. DOI: 10.1016/0956-716X(94)90045-0

  10. Holian, B. L. and Ravelo, R., Fracture simulations using largescale molecular dynamics. DOI: 10.1103/PhysRevB.51.11275

  11. Horstemeyer, M. F., Baskes, M. I., and Plimpton, S. J., Length scale and time scale effects on the plastic flow of FCC metals. DOI: 10.1016/S1359-6454(01)00149-5

  12. Kumar, K. S., Suresh, S., Chisolm, M. F., Horton, J. A., and Wang, P., Deformation of electodeposited nanocrystalline nickel. DOI: 10.1016/S1359-6454(02)00421-4

  13. Nakano, A., Kalia, R. K., and Vashishta, P., Growth of pore interfaces and roughness of fracture surfaces in porous silica: Million particle molecular-dynamics simulations. DOI: 10.1103/PhysRevLett.73.2336

  14. Needleman, A., An analysis of tensile decohesion along an interface. DOI: 10.1016/0022-5096(90)90001-K

  15. Needleman, A., Micromechanical modeling of interfacial decohesion. DOI: 10.1016/0304-3991(92)90117-3

  16. Ortiz, M. and Pandolfi, A., A class of cohesive elements for the simulation of three-dimensional crack propagation.

  17. Plimpton, S. J., Fast parallel algorithms for short-range molecular dynamics. DOI: 10.1006/jcph.1995.1039

  18. Rice, J. R., Dislocation nucleation from a crack tip: An analysis based on the peierls concept. DOI: 10.1016/s0022-5096(05)80012-2

  19. Sanders, P. G., Eastman, J. A., and Weertman, J. R., Elastic and tensile behavior of nanocrystalline copper and palladium. DOI: 10.1016/S1359-6454(97)00092-X

  20. Schiotz, J., Vegge, T., Tolla, F. D. D., and Jacobsen, K. W., Atomic-scale simulations for the mechanical deformation of nanocrystalline metals. DOI: 10.1103/PhysRevB.60.11971

  21. Spearot, D. E., Jacob, K. I., and McDowell, D. L., Non-local separation constitutive laws for interfaces and their relation to nanoscale simulations. DOI: 10.1016/j.mechmat.2003.08.002

  22. Sundararaghavan, V. and Zabaras, N., Combined MD and continuum approaches towards modeling inter-granular failure using cohesive zone models.

  23. Sundararaghavan, V. and Zabaras, N., Design of microstructuresensitive properties in elasto-viscoplastic polycrystals using multi-scale homogenization. DOI: 10.1016/j.ijplas.2006.01.001

  24. Suryanarayanan, R., Frey, C. A., Sastry, S. M. L., Waller, B. E., Bates, S. E., and Buhro, W. E., Mechanical properties of nanocrystalline copper produced by solution-phase synthesis. DOI: 10.1557/JMR.1996.0053

  25. Swygenhoven, H. V., Spaczer, M., Caro, A., and Farkas, D., Competing plastic deformation mechanisms in nanophase metals. DOI: 10.1103/PhysRevB.60.22

  26. Swygenhoven, H. V., Plastic deformation in metals with nanosized grains: Atomistic simulations and experiments. DOI: 10.4028/www.scientific.net/MSF.447-448.3

  27. Torre, F. D., Swygenhoven, H. V., and Victoria, M., Nanocrystalline electrodeposited Ni: Microstructure and tensile properties. DOI: 10.1016/S1359-6454(02)00198-2

  28. Tvergaard, V. and Hutchinson, J. W., The influence of plasticity on mixed-mode interface toughness. DOI: 10.1016/0022-5096(93)90057-M

  29. Tvergaard, V. and Hutchinson, J. W., Effect of strain dependent cohesive zone model on predictions of crack growth resistance. DOI: 10.1016/0020-7683(95)00261-8

  30. Warner, D. H., Sansoz, F., and Molinari, J. F., Atomistic based continuum investigation of plastic deformation in nanocrystalline copper. DOI: 10.1016/j.ijplas.2005.04.014

  31. Wei, Y. J. and Anand, L., Grain-boundary sliding and separation in polycrystalline metals: Application to nanocrystalline fcc metals. DOI: 10.1016/j.jmps.2004.04.006

  32. Wei, Y., Su, C., and Anand, L., A computational study of the mechanical behavior of nanocrystalline fcc metals. DOI: 10.1016/j.actamat.2006.03.007

  33. Willam, K., Simulation issues of distributed and localized failure computations.

  34. Xu, X. P. and Needleman, A., Numerical simulations of fast crack growth in brittle solids. DOI: 10.1016/0022-5096(94)90003-5

  35. Yamakov, V., Saether, E., Phillips, D. R., and Glaessgen, E. H., Molecular-dynamics simulation-based cohesive zone representation of intergranular fracture processes in aluminum. DOI: 10.1016/j.jmps.2006.03.004

  36. Yamakov, V., Wolf, D., Salazar, M., Phillpot, S. R., and Gleiter, H., Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular-dynamics simulation. DOI: 10.1016/S1359-6454(01)00167-7

  37. Yamakov, V., Wolf, D., Phillpot, S. R., and Gleiter, H., Grainboundary diffusion creep in nanocrystalline palladium by molecular-dynamics simulations. DOI: 10.1016/S1359-6454(01)00329-9

  38. Zavattieri, P. D. and Espinosa, H. D., Grain level analysis of crack initiation and propagation in brittle materials. DOI: 10.1016/S1359-6454(01)00292-0

  39. Zener, C. and Hollomon, J. H., Effect of strain rate upon plastic flow of steel. DOI: 10.1063/1.1707363

  40. Zhou, S. J., Lomdahl, P. S., Voter, A. F., and Holian, B. L., Three-dimensional fracture via large-scale molecular dynamics. DOI: 10.1016/S0013-7944(98)00053-8


Articles with similar content:

THEORETICAL AND ALGORITHMIC FORMULATION OF MODELS FOR ENERGETIC GND-BASED HARDENING IN SINGLE CRYSTALS
International Journal for Multiscale Computational Engineering, Vol.10, 2012, issue 6
Bob Svendsen, Swantje Bargmann
A MULTISCALE MODEL OF RATE DEPENDENCE OF NANOCRYSTALLINE THIN FILMS
International Journal for Multiscale Computational Engineering, Vol.10, 2012, issue 5
Fernando V. Stump, Ioannis Chasiotis, Nikhil Karanjgaokar, Philippe H. Geubelle
MULTISCALE MICROMORPHIC MODEL FOR THE PLASTIC RESPONSE OF CU THIN FILM
International Journal for Multiscale Computational Engineering, Vol.11, 2013, issue 1
J. F. Nie, Yuan Gao, Zhuo Zhuang, X. C. You, Z. L. Liu, Zhaohui Zhang
VARIATIONAL INEQUALITIES FOR HETEROGENEOUS MICROSTRUCTURES BASED ON COUPLE-STRESS THEORY
International Journal for Multiscale Computational Engineering, Vol.16, 2018, issue 2
Sonjoy Das, Gary F. Dargush, Ali R. Hadjesfandiari, Sourish Chakravarty
SIMULATION OF DYNAMIC STRAIN AGING PROCESS AT THE MICROSCOPIC SCALE BY MONTE CARLO DYNAMIC MODEL
International Journal for Multiscale Computational Engineering, Vol.14, 2016, issue 1
Shihua Fu, Qingchuan Zhang, Yansheng He