Inscrição na biblioteca: Guest
International Journal for Multiscale Computational Engineering

Publicou 6 edições por ano

ISSN Imprimir: 1543-1649

ISSN On-line: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

Molecular Dynamics Study of the Specimen Size and Imperfection Effects on the Failure Responses of Multi-Nanobar Structures

Volume 8, Edição 2, 2010, pp. 181-194
DOI: 10.1615/IntJMultCompEng.v8.i2.40
Get accessGet access

RESUMO

Based on the recent analytical and numerical studies of the size effect on the structural failure response of bar members in parallel arrangement at the macroscopic level, molecular dynamics simulations are performed to investigate the effects of size, imperfection, and number of nanobars on the failure mechanism of nanoscale hierarchical structures with one-dimensional members arranged in parallel. It appears that at the nanoscale the possibility of being in the stable softening regime increases with the decrease of nanobar length, and the energy dissipation associated with the postlimit softening regime increases with the increase of the number of nanobars in the system, regardless of imperfection types. The results obtained at the nanoscale not only match well the analytical and numerical predictions at the macroscopic level, but also provide more insight into the effects of imperfections on the postlimit structural response.

Referências
  1. Ackbarow, T., Chen, X., Keten, S., and Buehler, M. J., Hierarchies, multiple energy barriers, and robustness govern the fracture mechanics of α-helical and β-sheet protein. DOI: 10.1073/pnas.0705759104

  2. Andia, P. C., Costanzo, F., and Gray, G. L., A classical mechanics approach to the determination of the stress-strain response of particle systems. DOI: 10.1088/0965-0393/14/4/015

  3. Autumn, K., Liang, Y. A., Hsieh, S. T., Zesch, W., Wai, P. C., Kenny, T. W., Fearing, R., and Full, R. J., Adhesive force of a single gecko foot-hair. DOI: 10.1038/35015073

  4. Bazant, Z. P., Can multiscale-multiphysics methods predict softening damage and structural failure?. DOI: 10.1615/IntJMultCompEng.v8.i1.50

  5. Bazant, Z. P. and Chen, E. P., Scaling of structural failure. DOI: 10.1115/1.3101672

  6. Chen, Z., Gan, Y., and Labuz, J. F., An analytical and numerical study of the size effect on the failure response of hierarchical structures. DOI: 10.1615/IntJMultCompEng.v6.i4.50

  7. Chen, Z., Shen, L., Gan, Y., and Fang, H. E., A hyper-surface for the combined loading rate and specimen size effects on the material properties. DOI: 10.1615/IntJMultCompEng.v3.i4.40

  8. Cheung, K. S. and Yip, S., Atomic-level stress in an inhomogeneous system. DOI: 10.1063/1.350186

  9. Clausius, R., On a mechanical theory applicable to heat.

  10. Currey, J. D., The Mechanical Adaptations of Bones.

  11. Daw, M. S. and Baskes, M. I., Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. DOI: 10.1103/PhysRevB.29.6443

  12. Fratzl, P., Gupta, H. S., Paschalis, E. P., and Roschger, P., Structure and mechanical quality of the collagen-mineral nano-composite in bone. DOI: 10.1039/b402005g

  13. Gao, H., Wang, X., Yao, H., Gorb, S., and Arzt, E., Mechanics of hierarchical adhesion structures of geckos. DOI: 10.1016/j.mechmat.2004.03.008

  14. Gu, Z., Ye, H., and Gracias, D. H., The bonding of nanowire assemblies using adhesive and solder.

  15. Horstemeyer, M. F., Baskes, M. L., and Plimpton, S. J., Length scale and time scale effects on the plastic flow of FCC metals. DOI: 10.1016/S1359-6454(01)00149-5

  16. Humphrey, W., Dalke, A., and Schulten, K., VMD-visual molecular dynamics. DOI: 10.1016/0263-7855(96)00018-5

  17. Irving, J. H. and Kirkwood, J. G., The statistical mechanical theory of the transport process, IV. The equations of hydrodynamics. DOI: 10.1063/1.1747782

  18. Johnson, R. A., Analytic nearest-neighbor model for fcc metals. DOI: 10.1103/PhysRevB.37.3924

  19. Johnson, R. A., Alloy models with the embedded-atom method. DOI: 10.1103/PhysRevB.39.12554

  20. Kamat, S., Su, X., Ballarini, R., and Heuer, A. H., Structural basis for the fracture toughness of the shell of the conch strombus gigas. DOI: 10.1038/35016535

  21. Li, C., Fang, G., Yuan, L., Liu, N., Ai, L., Xiang, Q., Zhao, D., Pan, C., and Zhao, X., Field emission from carbon nanotube bundle arrays grown on self-aligned ZnO nanorods. DOI: 10.1088/0957-4484/18/15/155702

  22. Li, Y. L., Kinloch, I. A., and Windle, A. H., Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. DOI: 10.1126/science.1094982

  23. Liang, H. Y., Liu, G. R., and Han, X., Atomistic simulation on the stiffening and softening mechanism of nanowires. DOI: 10.1007/978-1-4020-3953-9_99

  24. Liang, H., Upmanyu, M., and Huang, H., Size-dependent elasticity of nanowires: Nonlinear effects. DOI: 10.1103/PhysRevB.71.241403

  25. Liang, W. and Zhou, M., Size and strain rate in tensile deformation of Cu nanowires.

  26. Liu, B. and Qiu, X., How to compute atomic stress objectively. DOI: 10.1166/jctn.2009.1148

  27. Lovett, R. and Baus, M., A molecular theory of the Laplace relation and of the local forces in a curved interface. DOI: 10.1063/1.473384

  28. Majumder, M., Chopra, N., Andrews, R., and Hinds, B. J., Enhanced flow in carbon nanotubes. DOI: 10.1038/438044a

  29. Nakamura, A., Matsunaga, K., Tohma, J., Yamamoto, T., and Ikuhara, Y., Conducting nanowires in insulating ceramics. DOI: 10.1038/nmat920

  30. Rowlinson, J. S. and Widom, B., Molecular Theory of Capillarity.

  31. Shen, L. and Chen, Z., An investigation of the effect of interfacial atomic potential on the stress transition in thin films. DOI: 10.1088/0965-0393/12/4/S05

  32. Shen, L. and Chen, Z., A multi-scale simulation of tungsten film delamination from silicon substrate. DOI: 10.1016/j.ijsolstr.2005.02.021

  33. Shi, S., Sun, J., Zhang, G., Guo, J., and Wang, Z., The growth of thin silver nanowire bundles using RbAg<sub>4</sub>I<sub>5</sub> crystal grain thin film and the ionic conductivity of the thin film. DOI: 10.1016/j.physb.2005.02.022

  34. Subramaniyan, A. K. and Sun, C. T., Equivalence of virial stress to continuum Cauchy stress.

  35. Uplaznik, M., Bercic, B., Strle, J., Ploscaru, M. I., Dvorsek, D., Kusar, P., Devetak, M., Vengust, D., Podobnik, B., and Mihailovic, D. D., Conductivity of single Mo<sub>6</sub>S<sub>9-x</sub>I<sub>x</sub> molecular nanowire bundles. DOI: 10.1088/0957-4484/18/50/508001

  36. Verweij, H., Schillo, M. C., and Li, J., Fast mass transport through carbon nanotube membranes. DOI: 10.1002/smll.200700368

  37. Yao, H. and Gao, H., Mechanics of robust and releasable adhesion in biology: bottom-up designed hierarchical structures of gecko. DOI: 10.1016/j.jmps.2006.01.002

  38. Yao, H. and Gao, H., Multi-scale cohesive laws in hierarchical materials. DOI: 10.1016/j.ijsolstr.2007.06.007

  39. Zhang, S. L., Khare, R., Lu, Q., and Belytschko, T., A bridging domain and strain computation method for coupled atomistic-continuum modelling of solids. DOI: 10.1002/nme.1895

  40. Zhou, M., A new look at the atomic level virial stress: On continuum-molecular system equivalence. DOI: 10.1098/rspa.2003.1127

CITADO POR
  1. Chen Zhen, Jiang Shan, Gan Yong, The “Inverse Hall-Petch” effect on the impact response of single crystal copper, Acta Mechanica Sinica, 28, 4, 2012. Crossref

  2. Chen Zhen, Jiang Shan, Gan Yong, Oloriegbe Y. S., Sewell Thomas D., Thompson Donald L., Size effects on the impact response of copper nanobeams, Journal of Applied Physics, 111, 11, 2012. Crossref

  3. Mirmohammadi Seyed Aliakbar, Shen Luming, Gan Yixiang, A reliable approach for calculating thermophysical properties of liquid using molecular dynamics simulations, Chemical Physics Letters, 712, 2018. Crossref

Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa Políticas de preços e assinaturas Begell House Contato Language English 中文 Русский Português German French Spain