Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
International Journal for Multiscale Computational Engineering
Fator do impacto: 1.016 FI de cinco anos: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Imprimir: 1543-1649
ISSN On-line: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2013005960
pages 497-504

UPSCALING OF CARBONATE ROCKS FROM MICROPORE SCALE TO CORE SCALE

Jun Yao
School of Petroleum Engineering, China University of Petroleum (East China), No. 66 Changjiang West Road, Huangdao Zone, Qingdao City, Shandong Province, 266580 P.R. China
Chenchen Wang
Yangtze University
Yongfei Yang
School of Petroleum Engineering, China University of Petroleum, 66, Changjiang West Road, Huangdao District of Qingdao City, Shandong Province, China,266580
Xin Wang
School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, China

RESUMO

In this paper, an integrated micropore-scale to core-scale modeling method is proposed to capture both the different scale pore structures and multiphase flow properties in carbonate rocks. The first upscaling is at submicrometer to micrometer scale. The micropore-scale upscaling is accounted for through the micropore network model, which is extracted through three-dimensional micropore digital rocks based on two-dimensional high-resolution carbonate images and could describe the geometric and hydraulic properties of micropores. The second upscaling is in the tens to hundreds of micrometers scale. The macropore-scale upscaling is described through a dual-pore network, which is constructed based on the integration of macropore and micropore networks and could describe the macro- and micropore characteristics simultaneously. The last upscaling is at millimeter to centimeter scale. Core-scale upscaling is described by a capillary equilibrium method, which could produce the integrated relative permeability curve of whole core plug. This integrated upscaling method could capture the detailed micro- and macropore structures in carbonate rock and then upscaling the relative permeability curve to the core scale, which could be used for large-scale grid calculations of carbonate reservoir simulations.