Inscrição na biblioteca: Guest
Computational Thermal Sciences: An International Journal

Publicou 6 edições por ano

ISSN Imprimir: 1940-2503

ISSN On-line: 1940-2554

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.5 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00017 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.28 SJR: 0.279 SNIP: 0.544 CiteScore™:: 2.5 H-Index: 22

Indexed in

DROPLET HEATING AND EVAPORATION−RECENT RESULTS AND UNSOLVED PROBLEMS

Volume 4, Edição 6, 2012, pp. 485-496
DOI: 10.1615/ComputThermalScien.2012006265
Get accessGet access

RESUMO

Recently developed approaches to the hydrodynamic, kinetic, and molecular dynamic modeling of fuel droplet heating and evaporation are reviewed. Two new solutions to the heat conduction equation, taking into account the effect of the moving boundary during transient heating of an evaporating droplet, are discussed. The first solution is the explicit analytical solution to this equation, while the second one reduces the solution of the differential transient heat conduction equation to the solution of the Volterra integral equation of the second kind. The new approach predicts lower droplet surface temperatures and slower evaporation rates compared with the traditional approach. An alternative approach to the same problem has been based on the assumption that the time evolution of a droplet's radius, Rd (t), is known. For sufficiently small time steps, the time evolutions of droplet surface temperatures and radii predicted by both approaches coincide. A simplified model for multi-component droplet heating and evaporation, based on the analytical solution to the species diffusion equation inside droplets, is discussed. Two new solutions to the equation, describing the diffusion of species during multi-component droplet evaporation taking into account the effects of the moving boundary, are presented. A quasi-discrete model for heating and evaporation of complex multi-component hydrocarbon fuel droplets is described. The predictions of the model, taking into account the effects of the moving boundary during the time steps on the solutions to the heat transfer and species diffusion equations, are discussed. A new algorithm, based on simple approximations of the kinetic results, suitable for engineering applications, is discussed. The results of kinetic modeling, taking into account the effects of inelastic collisions, and applications of molecular dynamics simulations to study the evaporation of n-dodecane droplets are briefly summarized. The most challenging and practically important unsolved problems with regard to the modeling of droplet heating and evaporation are summarized and discussed.

CITADO POR
  1. Voytkov Ivan, Volkov Roman, Strizhak Pavel, Reducing the flue gases temperature by individual droplets, aerosol, and large water batches, Experimental Thermal and Fluid Science, 88, 2017. Crossref

  2. Sazhin Sergei S., Modelling of fuel droplet heating and evaporation: Recent results and unsolved problems, Fuel, 196, 2017. Crossref

  3. Sazhin Sergei, Heating and Evaporation of Monocomponent Droplets, in Droplets and Sprays, 2014. Crossref

  4. Sazhin Sergei S., Heating and Evaporation of Mono-component Droplets, in Droplets and Sprays: Simple Models of Complex Processes, 2022. Crossref

  5. Sazhin S.S., Al Qubeissi M., Kolodnytska R., Elwardany A.E., Nasiri R., Heikal M.R., Modelling of biodiesel fuel droplet heating and evaporation, Fuel, 115, 2014. Crossref

Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa Políticas de preços e assinaturas Begell House Contato Language English 中文 Русский Português German French Spain