Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Computational Thermal Sciences: An International Journal
ESCI SJR: 0.249 SNIP: 0.434 CiteScore™: 0.7

ISSN Imprimir: 1940-2503
ISSN On-line: 1940-2554

Computational Thermal Sciences: An International Journal

DOI: 10.1615/ComputThermalScien.2019025467
pages 353-366

EXPERIMENTAL MEASUREMENTS AND COMPUTATIONAL SIMULATION (COMPUTATIONAL FLUID DYNAMICS) APPLIED FOR THERMAL ANALYSIS OF AN UNINTERRUPTIBLE POWER SUPPLY

R. J. Pontes Lima
Solar Energy and Natural Gas Laboratory, Campus do Pici, Bl. 718, 60455-760, Fortaleza-CE, Brazil
L. Luppi
Solar Energy and Natural Gas Laboratory, Campus do Pici, Bl. 718, 60455-760, Fortaleza-CE, Brazil
Paulo A. Costa Rocha
Solar Energy and Natural Gas Laboratory, Campus do Pici, Bl. 718, 60455-760, Fortaleza-CE, Brazil
M. E. Vieira da Silva
Solar Energy and Natural Gas Laboratory, Campus do Pici, Bl. 718, 60455-760, Fortaleza-CE, Brazil
C. M. Tavares Cruz
Computer System Engineering Laboratory, Campus do Pici, Bl. 705, 60455-760, Fortaleza-CE, Brazil
S. P. Mendonça
Solar Energy and Natural Gas Laboratory, Campus do Pici, Bl. 718, 60455-760, Fortaleza-CE, Brazil

RESUMO

The temperature field generated by the components of electronic devices has great influence on their cooling system design. Computational fluid dynamics simulation may be used to predict the airflow velocities and temperature without building thermal prototypes. It can greatly reduce the cost of engineering physical models and data acquisition equipment. However, the power density of actual systems is pushing the limits of the electronics cooling technology. In this sense, a high degree of accuracy of simulations applied to predict the airflow velocities and temperatures is expected, therefore obtaining a shorter development cycle by reducing or even eliminating the need for building prototypes. This study aims to demonstrate the reliability of the temperature field simulation of an uninterruptible power supply. The simulation focused on the transformer, because it dissipates the major heat flux, where approximately 80 W of power is generated on the laminated core. In order to ensure that the results are not mesh dependent, a study of the convergence was performed and presented. The findings demonstrate good agreement between measured and expected temperatures for the different component parts. The overall mean error between the simulation data and the experimental results is about 4%.

Referências

  1. Bardina, J.E., Huang, P.G., and Coakley, T.J., Turbulence Modeling, Validation, Testing, and Development, NASA/TM, p. 110446, 1997.

  2. Boukhanouf, R. and Haddad, A., A CFD Analysis of an Electronics Cooling Enclosure for Application in Telecommunication Systems, Appl. Therm. Eng., vol. 30, pp. 2426-2434, 2010.

  3. Cerroni, D., Da Via, R., Manservisi, S., Menghini, F., Pozzetti, G., and Scardovelli, R., Numerical Validation of a k-w-kQ-wQ Heat Transfer Turbulence Model for Heavy Liquid Metals, J. Phys.: Conf. Ser., vol. 665, p. 012046, 2015.

  4. Fernandes, J., Ghalanbor, S., Docca, A., Aldham, C., Agonafer, D., Chenelly, E., Chan, B., and Ellsworth, M., Combining Compuational Fluid Dynamics (CFD) and Flow Networks Modeling (FNM) for Design of a Multi-Chip Module (MCM) Cold Plate, ASME2013Intl. Tech. Conf. Exh. Pack. Integ. Elect. Photon. Microsys, Burlingame, CA, 2013.

  5. Gupta, D., Venkataraman, V., and Nimje, R., CFD and Thermal Analysis of Heat Sink and Its Application in CPU, Int. J. Emerging Technol. Adv. Eng., vol. 14, no. 8, pp. 199-202, 2014.

  6. Harlow, F.H., Fluid Dynamics in Group T-3 Los Alamos National Laboratory: (LA-UR-03-3852), J. Comput. Phys., vol. 195, no. 2, pp. 414-433,2004.

  7. Lee, H., Agonafer, D.D., Won, Y., Houshmand, F., Gorle, C., Asheghi, M., and Goodson, K.E., Thermal Modeling of Extreme Heat Flux Microchannel Coolers for GaN-on-SiC Semiconductor Devices, J. Electron. Packag., vol. 138, no. 1, p. 010907, 2016.

  8. Menter, F.R., Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications, AIAA J., vol. 32, pp. 1598-1605, 1994.

  9. Menter, F.R., Zonal Two Equation k-w Turbulence Model for Aerodynamic Flows, in 24th Fluid Dynamics Conf, No. AIAA-93- 2906, AIAA, Orlando, FL, pp. 1-21, 1993.

  10. Rocha, P.A.C., Rocha, H.H.B., Carneiro, F.O.M., Silva, M.E.V., and Andrade, C.F., A Case Study on the Calibration of the k-w SST (Shear Stress Transport) Turbulence Model for Small Scale Wind Turbines Designed with Cambered and Symmetrical Airfoils, Energy, vol. 97, no. 2, pp. 144-150, 2016.

  11. Rocha, P.A.C., Rocha, H.H.B., Carneiro, F.O.M., Silva, M.E.V., and Bueno, A.V., k-e SST (Shear Stress Transport) Turbulence Model Calibration: A Case Study on a Small Scale Horizontal Axis Wind Turbine, Energy, vol. 65, pp. 412-418, 2014.

  12. Shang, J.S., Three Decades of Accomplishments in Computational Fluid Dynamics, Prog. Aeiosp. Sci., no. 40, pp. 173-197,2004.

  13. Stapleton, K.W., Guentsch, E., Hoskinson, M.K., and Finlay, W.H., On the Suitability of k-e Turbulence Modeling for Aerosol Deposition in the Mouth and Throat: A Comparison with Experiment, J. Aeros. Sci., vol. 31, no. 6, pp. 739-749,2000.

  14. Tatchell, D., Parry, J., Eng, C., and Clark, I., Advances in Cooling Electronics with CFD, Presented in NAFEMS World Congress, 2013.

  15. Thom, A., The Flow past Circular Cylinders at Low Speeds, Proc. Soc. London, Ser. A, vol. 141, pp. 651-566, 1933.

  16. Tom Lee, T. Y., Application of a CFD Tool for System-Level Thermal Simulation, IEEE Trans. Compon, Packag., Manuf. Technol, Part A, vol. 17, no. 4, pp. 564-572, 1994.

  17. Versteeg, H. and Malalasekera, W., An Introduction to Computational Fluid Dynamics: The Finite Volume Method, 2nd Ed., Harlow, UK: Pearson Education Limited, 2007.

  18. Walchi, R., Brunschwiler, T., Michel, B., and Poulikakos, D., Combined Local Microchannel-Scale CFD Modeling and Global Chip Scale Network Modeling for Electronics Cooling System, Int. J. Heat Mass. Transf., vol. 53, pp. 1004-1014, 2010.

  19. Wilcox, D.C., Turbulence Modeling for CFD, 2nd Ed., La Canada, CA: DCW Industries, pp. 103-217, 1998.

  20. Wojtas, K., Orciuch, W., and Makowski, L., Comparison of Large Eddy Simulations and k-e Modeling of Fluid Velocity and Tracer Concentration in Impinging Jet Mixers, Chem. Proc. Eng., vol. 36, no. 2, pp. 251-262, 2016.

  21. Xie, G., Li, S., Sunden, B., and Zhang, W., Computational Fluid Dynamics for Thermal Performance of a Water-Cooled Minichannel Heat Sink with Different Chip Arrangements, Int. J. Numer. Methods, vol. 24, no. 4, pp. 797-810,2014.

  22. Yu, H. and The, J., Validation and Optimization of SST k-w Turbulence Model for Pollutant Dispersion within a Building Array, Atmos. Environ., vol. 145, pp. 225-238, 2016.

  23. Zhang, M.T., Jovanovic, M.M., and Lee, F.C., Design and Analysis of Thermal Management for High-Power-Density Converters in Sealed Enclosures, IEEE Appl. Power Electron. Conf. Exp., vol. 1, pp. 405-412, 1997.

  24. Zhao, J., Huang, S., Gong, L., and Huang, Z., Numerical Study and Optimizing Micro Square Pin-Fin Heat Sink for Electronic Cooling, Appl. Therm. Eng., vol. 95, pp. 1347-1359,2015.


Articles with similar content:

ERROR BUDGET CONTROL IN COORDINATE MEASURING SYSTEMS
Flexible Automation and Intelligent Manufacturing, 1997:
Proceedings of the Seventh International FAIM Conference, Vol.0, 1997, issue
M. M. Sfantsikopoulos , S.C. Diplaris, V. S. Issopoulos, D. A. Mills
THE ENERGY EFFICIENCY ANALYSIS OF DATA CENTER COOLING BASED ON SEPARATED HEAT PIPE
International Heat Transfer Conference 16, Vol.10, 2018, issue
Tao Wang, Huan Liu, Yuhua Li, Lei Zhang, Dawei Tang, Yuyan Jiang
ENERGY EFFICIENCY TRENDS AND THERMAL MANAGEMENT REQUIREMENTS FOR COMPUTER SYSTEMS FROM THE CHIP TO THE DATA CENTER
International Heat Transfer Conference 13, Vol.0, 2006, issue
A. Shah, Chandrakant D. Patel, Van P. Carey, Cullen Bash
NUMERICAL PREDICTIONS OF INDOOR CLIMATE IN A LIGHT ALLOY CASTING FACILITY
International Heat Transfer Conference 13, Vol.0, 2006, issue
Patrik Rohdin, B. Moshfegh
ADAPTIVE SAMPLING WITH TOPOLOGICAL SCORES
International Journal for Uncertainty Quantification, Vol.3, 2013, issue 2
Dan Maljovec, Valerio Pascucci, Bei Wang, Ana Kupresanin, Gardar Johannesson, Peer-Timo Bremer