Inscrição na biblioteca: Guest
Atomization and Sprays

Publicou 12 edições por ano

ISSN Imprimir: 1044-5110

ISSN On-line: 1936-2684

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.2 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.8 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00095 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.28 SJR: 0.341 SNIP: 0.536 CiteScore™:: 1.9 H-Index: 57

Indexed in

NUMERICAL STUDY OF TRANSIENT EVAPORATION OF MOVING TWO-COMPONENT FUEL DROPLETS

Volume 22, Edição 6, 2012, pp. 493-513
DOI: 10.1615/AtomizSpr.2012006095
Get accessGet access

RESUMO

This paper presents the numerical simulation of evaporation of a moving two-component liquid fuel spherical droplet under atmospheric pressure. The transient two-phase numerical model includes variations of thermo-physical properties as functions of temperature and species concentration in liquid and vapor phases, multi-component diffusion, and surface tension effects. The model has been validated using the experimental data available in the literature for suspended heptane-decane-blended droplets evaporating under a forced convective air environment. The validated model is used to study the vaporization characteristics of moving binary droplets. The blends considered in this study are isooctane blended with ethanol and decane blended with methyl-butyrate. The temporal variations of the evaporation constant, droplet Reynolds number, and drag coefficients are presented. Variations of integrated quantities, such as the time-averaged evaporation constant, droplet lifetime, and droplet final penetration distance as a function of blend composition, are also presented. The behavior of isooctane-ethanol blends is seen to be quite different from that of methyl-butyrate-decane blends.

CITADO POR
  1. Shanthanu Sarkar, Raghuram S., Raghavan Vasudevan, Transient evaporation of moving water droplets in steam–hydrogen–air environment, International Journal of Heat and Mass Transfer, 64, 2013. Crossref

  2. Raghavan Vasudevan, Numerical Modeling of Evaporation and Combustion of Isolated Liquid Fuel Droplets: a Review, Journal of the Indian Institute of Science, 99, 1, 2019. Crossref

  3. Ray Saroj, Raghavan Vasudevan, Numerical study of evaporation characteristics of biodiesel droplets of Indian origin, Fuel, 271, 2020. Crossref

Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa Políticas de preços e assinaturas Begell House Contato Language English 中文 Русский Português German French Spain