Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Atomization and Sprays
Fator do impacto: 1.262 FI de cinco anos: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Imprimir: 1044-5110
ISSN On-line: 1936-2684

Volumes:
Volume 29, 2019 Volume 28, 2018 Volume 27, 2017 Volume 26, 2016 Volume 25, 2015 Volume 24, 2014 Volume 23, 2013 Volume 22, 2012 Volume 21, 2011 Volume 20, 2010 Volume 19, 2009 Volume 18, 2008 Volume 17, 2007 Volume 16, 2006 Volume 15, 2005 Volume 14, 2004 Volume 13, 2003 Volume 12, 2002 Volume 11, 2001 Volume 10, 2000 Volume 9, 1999 Volume 8, 1998 Volume 7, 1997 Volume 6, 1996 Volume 5, 1995 Volume 4, 1994 Volume 3, 1993 Volume 2, 1992 Volume 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v19.i11.30
pages 1031-1044

X-RAY RADIOGRAPHY MEASUREMENTS OF DIESEL SPRAY STRUCTURE AT ENGINE-LIKE AMBIENT DENSITY

Alan L. Kastengren
Energy Systems Division, X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
Christopher F. Powell
Energy Systems Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
Yujie Wang
Physics Department, Shanghai Jiaotong University, Shanghai, China
Kyoung-Su Im
Livermore Software Technology Corporation, Livermore, CA, USA
Jin Wang
Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA

RESUMO

X-ray radiography has been used to examine the dependence of the near-nozzle fuel distribution of diesel sprays on injection pressure and ambient density. Measurements of sprays from two nozzles with different geometries, one extensively hydroground and the other minimally hydroground, have been obtained to show how nozzles of different geometries respond to changes in ambient density and rail pressure. The spray penetration near the nozzle demonstrates little dependence on ambient density, but a strong dependence on rail pressure. Comparison of these results with standard correlations in the literature show that in the near-nozzle region examined in this study, the penetration is expected to show little dependence on ambient density. The spray width becomes much larger for both nozzles as the ambient density increases. Rescaling the axial position by the square root of the density ratio between the fuel and the ambient gas accounts for the trends in spray width with ambient density for both nozzles. The radiography data can also be examined to determine the relative trends in the steady-state, mass-averaged axial velocity of the spray. The velocity decays more rapidly with axial distance as the ambient density increases. Rescaling the axial position also accounts for the trend of velocity decay with ambient pressure.


Articles with similar content:

TIME-RESOLVED X-RAY RADIOGRAPHY OF SPRAYS FROM ENGINE COMBUSTION NETWORK SPRAY A DIESEL INJECTORS
Atomization and Sprays, Vol.24, 2014, issue 3
Xusheng Zhang, Daniel Duke, Alan L. Kastengren, Christopher F. Powell, F. Zak Tilocco, Seoksu Moon
DIESEL SPRAY VISUALIZATION AND SHOCKWAVES
Atomization and Sprays, Vol.20, 2010, issue 3
Harri Hillamo, Martti Larmi, Ossi Kaario, Ville Vuorinen, Teemu Sarjovaara
COMPARISON OF DROP SIZE DATA FROM GROUND AND AERIAL APPLICATION NOZZLES AT THREE TESTING LABORATORIES
Atomization and Sprays, Vol.24, 2014, issue 2
Ryan S. Henry, Bradley K. Fritz, Andrew Hewitt, Zbigniew Czaczyk, W. Clint Hoffmann, Greg R. Kruger
ENGINE COMBUSTION NETWORK (ECN): MEASUREMENTS OF NOZZLE GEOMETRY AND HYDRAULIC BEHAVIOR
Atomization and Sprays, Vol.22, 2012, issue 12
Tim Bazyn, Raul Payri, Alan L. Kastengren, Lyle M. Pickett, Julien Manin, Christopher F. Powell, F. Zak Tilocco
INVESTIGATION ON THE INTERACTION AMONG MULTI-SPRAYS GENERATED FROM PRESSURE-SWIRL ATOMIZERS
Atomization and Sprays, Vol.27, 2017, issue 6
Yong Huang, Zekun Zheng