Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Atomization and Sprays
Fator do impacto: 1.262 FI de cinco anos: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Imprimir: 1044-5110
ISSN On-line: 1936-2684

Volumes:
Volume 29, 2019 Volume 28, 2018 Volume 27, 2017 Volume 26, 2016 Volume 25, 2015 Volume 24, 2014 Volume 23, 2013 Volume 22, 2012 Volume 21, 2011 Volume 20, 2010 Volume 19, 2009 Volume 18, 2008 Volume 17, 2007 Volume 16, 2006 Volume 15, 2005 Volume 14, 2004 Volume 13, 2003 Volume 12, 2002 Volume 11, 2001 Volume 10, 2000 Volume 9, 1999 Volume 8, 1998 Volume 7, 1997 Volume 6, 1996 Volume 5, 1995 Volume 4, 1994 Volume 3, 1993 Volume 2, 1992 Volume 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v11.i4.90
pages 453-470

ON THE PREDICTION AND STRUCTURES OF WIDE-ANGLE FULL-CONE LIQUID SPRAYS

S. J. Walmsley
Atomization and Sprays Research Group, Department of Mechanical Engineering, University of anchester Institute of Science and Technology, Manchester, U.K.

RESUMO

This article describes the modification, use, and validation of a three-dimensional computational fluid dynamics (CFD) code applied to model solid-cone sprays produced by pressure-swirl atomizers. The finite-volume code used is a three-dimensional, orthogonal, two-phase, Lagrangian-tracking, transient code. It contains submodels for the secondary breakup of droplets and for collisions. The effect of the chosen initial drop size distribution on the predicted fully developed spray characteristics is investigated. The optimum initial conditions are determined by making comparisons with published experimental data. It is found that to obtain a realistic model, a range of drop sizes needs to be introduced. This range can be represented by a truncated Rosin-Rammler distribution discretized into 20 size classes. Each initial distribution can be characterized by the maximum, minimum, and Rosin-Rammler mean diameters. Relations are developed for these diameters as a function of the operating parameters. This work demonstrates that, to model a solid-cone spray accurately, the microscopic processes occurring within it, such as secondary breakup, need to be accounted for.


Articles with similar content:

A UNIFIED FUEL SPRAY BREAKUP MODEL FOR INTERNAL COMBUSTION ENGINE APPLICATIONS
Atomization and Sprays, Vol.18, 2008, issue 5
Dennis N. Assanis, Christos Chryssakis
FUNDAMENTAL CONSIDERATIONS FOR COAL SLURRY ATOMIZATION
Atomization and Sprays, Vol.15, 2005, issue 5
John P. Dooher
THE ENERGY SPECTRUM ANALOGY BREAKUP (SAB) MODEL FOR THE NUMERICAL SIMULATION OF SPRAYS
Atomization and Sprays, Vol.21, 2011, issue 12
Chawki Habchi
INFLUENCE OF REACTOR PRESSURE ON TWIN-FLUID ATOMIZATION: BASIC INVESTIGATIONS ON BURNER DESIGN FOR HIGH-PRESSURE ENTRAINED FLOW GASIFIER
Atomization and Sprays, Vol.25, 2015, issue 12
T. Kolb, N. Djordjevic, A. Sanger, Tobias Jakobs, N. Zarzalis
Development of a Diesel Spray Atomization Model Considering Nozzle Flow Characteristics
International Journal of Fluid Mechanics Research, Vol.24, 1997, issue 4-6
Kang Y. Huh, Eunju Lee, Jaye Koo