Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Atomization and Sprays
Fator do impacto: 1.262 FI de cinco anos: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Imprimir: 1044-5110
ISSN On-line: 1936-2684

Volume 29, 2019 Volume 28, 2018 Volume 27, 2017 Volume 26, 2016 Volume 25, 2015 Volume 24, 2014 Volume 23, 2013 Volume 22, 2012 Volume 21, 2011 Volume 20, 2010 Volume 19, 2009 Volume 18, 2008 Volume 17, 2007 Volume 16, 2006 Volume 15, 2005 Volume 14, 2004 Volume 13, 2003 Volume 12, 2002 Volume 11, 2001 Volume 10, 2000 Volume 9, 1999 Volume 8, 1998 Volume 7, 1997 Volume 6, 1996 Volume 5, 1995 Volume 4, 1994 Volume 3, 1993 Volume 2, 1992 Volume 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2019029661
pages 59-78


Rubby Prasetya
Graduate School of Maritime Sciences, Kobe University, Japan
Akira Sou
Graduate School of Maritime Sciences, Kobe University, Japan
Seoksu Moon
Department of Mechanical Engineering, Inha University
Raditya Hendra Pratama
Graduate School of Maritime Sciences, Kobe University, 5-1-1, Fukaeminami, Higashinada, Kobe 658-0022, Japan; Research Institute for Energy Conservation, National Institute of Advanced Industrial Science and Technology, Japan
Yoshitaka Wada
Powertrain Engineering Analysis Group, Mazda Motor Corporation, Japan
Hideaki Yokohata
Powertrain Engineering Analysis Group, Mazda Motor Corporation, Japan


Visualization of internal cavitation flow in the nozzle is sometimes carried out with enlarged, trans-parent nozzles, in order to capture the images of cavitation bubbles with relatively high spatial resolution. However, it is unclear whether knowledge obtained from large-scale nozzles can be applied to nozzles with much smaller sizes, which provides a great impetus to study the nozzle size effects on in-nozzle cavitation and discharged liquid jet characteristics. In this study, visualization of cavitation in nozzles with various sizes was conducted to clarify the effects of nozzle size on cavitation. The visualization was carried out using x-ray phase contrast imaging (XPCI) to clearly observe individual cavitation bubbles. Furthermore, to investigate the effects of cavitation in nozzles with various sizes on the wavy interface structure of a discharged liquid jet, the discharged liquid jets were also visualized. Rectangular plain-orifice nozzles with a length-to-width ratio of 4 were used in the study. The width of the nozzles varies from 2.0, 1.0, and 0.50, to 0.25 mm. As a result of the study, we clarified the fact that a cavitation cloud is made of a number of deformed bubbles, while a sheet cavitation consists of a single cavitation film. In-nozzle cavitation bubbles follow the similarity law; that is, the diameter of incipient cavitation bubbles changes along with the change in nozzle size. Additionally, the wavy structure of the discharged liquid jet is finer at the super cavitation regime, although the finer structure is suppressed as nozzle size decreases, due to the relatively stronger surface tension force acting on the interface of the wavy liquid jet discharged from smaller nozzles.


  1. Arcoumanis, C., Flora, H., Gavaises M., and Badami, M., Cavitation in Real-Size Multi-Hole Diesel Injector Nozzles, SAE Tech. Paper No. 2000-01-1249, 2000.

  2. Battistoni, M., Duke, D., Swantek, A., Tilocco, Z., Powell, C., and Som, S., Effects of Noncondensable Gas on Cavitating Nozzle, Atomization Sprays, vol. 25, no. 6, pp. 453–483, 2015.

  3. Bergwerk, W., Flow Pattern in Diesel Nozzle Spray Holes, in Proc. of the Institution of Mechanical Engineers, vol. 173, no. 1, pp. 655–660, 1959.

  4. Chaves, H., Knapp, M., Kubitzek, A., and Obermeier, F., Experimental Study of Cavitation in the Nozzle Hole of Diesel Injectors using Transparent Nozzles, SAE Tech. Paper No. 950290, 1995.

  5. Chaves, H., Knake, R., and Miranda, R., Particle Image Velocimetry Measurements of the Cavitating Flow in a Real Size Transparent VCO Nozzle, in Proc. of 6th Int. Conf. on Multiphase Flow, Leipzig, Germany, 2007.

  6. Coutier-Delgosha, O., Vabre, A., Hocevar, M., Delion, R., Dazin, A., Lazaro, D., Gmar, M., Fezzaa, K., and Lee, W.-K., Local Measurements in Cavitating Flow by Ultra-Fast X-Ray Imaging, in Proc. of the ASME 2009 Fluids Engineering Division Summer Meeting, Vail, CO, 2009.

  7. Duke, D., Kastengren, A., Tilocco, Z., Swantek, A., and Powell, C., X-Ray RadiographyMeasurements of Cavitating Nozzle Flow, Atomization Sprays, vol. 23, no. 9, pp. 841–860, 2013.

  8. Duke, D., Swantek, A., Tilocco, Z., Kastengren, A., Fezzaa, K., Neroorkar, K., Moulai, M., Powell, C., and Schmidt, D., X-Ray Imaging of Cavitation in Diesel Injectors, SAE Int. J. Engines, vol. 7, no. 2, pp. 1003–1016, 2014.

  9. Duke, D., Swantek, A., Kastengren, A., Fezzaa, K., and Powell, C., Recent Developments in X-Ray Diagnostics for Cavitation, SAE Int. J. Fuels Lubricants, vol. 8, no. 1, pp. 135–146, 2015a.

  10. Duke, D., Swantek, A., Kastengren, A., and Powell, C., X-Ray Diagnostics for Cavitating Nozzle Flow, J. Phys.: Conf. Ser., vol. 656, p. 012110, 2015b.

  11. Duke, D., Kastengren, A., Swantek, A., Matusik, K., and Powell, C., X-Ray Fluorescence Measurements of Dissolved Gas and Cavitation, Exp. Fluids, vol. 57, no. 10, pp. 1–14, 2016.

  12. Duke, D., Matusik, K., Kastengren, A., Swantek, A., Sovis, N., Payri, R., Viera, J., and Powell, C., X-Ray Radiography of Cavitation in a Beryllium Alloy Nozzle, Int. J. Engine Res., vol. 18, nos. 1-2, pp. 39–50, 2017.

  13. Duke, D., Kastengren, A., Matusik, K., and Powell, C., Hard X-Ray Fluorescence Spectroscopy of High Pressure Cavitating Fluids in Aluminum Nozzles, Int. J. Multiphase Flow, vol. 108, pp. 69–79, 2018.

  14. Dular, M., Khlifa, I., Fuzier, S., Adama, M., and Coutier-Delgosha, O., Scale Effect on Unsteady Cloud Cavitation, Exp. Fluids, vol. 53, no. 5, pp. 1233–1250, 2012.

  15. Goney, K. and Corradini, M., Isolated Effects of Ambient Pressure, Nozzle Cavitation and Hole Inlet Geometry on Diesel Injection Spray Characteristics, SAE Tech. Paper no. 2000-01-2043, 2000.

  16. Iben, U., Morozov, A., Winklhofer, E., and Wolf, F., Laser-Pulse Interferometry Applied to High-Pressure Fluid Flow in Micro Channels, Exp. Fluids, vol. 50, no. 3, pp. 597–611, 2011.

  17. Im, K.-S., Cheong, S.-K., Powell, C., Lai, M.-C., and Wang, J., Unraveling the Geometry Dependence of In-Nozzle Cavitation in High-Pressure Injectors, Sci. Rep., vol. 3, no. 2067, 2013.

  18. Inoue, K., Oka, T., Suzuki, T., Yagi, N., Takeshita, K., Goto, S., and Ishikawa, T., Present Status of High Flux Beamline (BL40XU) at SPring-8, Nucl. Instrum. Methods Phys. Res., Sect. A, vols. 467–468, pp. 674–677, 2001.

  19. Karathanassis, I., Koukouvinis, P., Kontolatis, E., Lee, Z., Wang, J., Mitroglou, N., and Gavaises, M., High-Speed Visualization of Vortical Cavitation using Synchrotron Radiation, J. Fluid Mech., vol. 838, pp. 148–164, 2018.

  20. Kastengren, A., and Powell, C., Synchrotron X-Ray Techniques for Fluid Dynamics, Exp. Fluids, vol. 55, no. 3, p. 1686, 2014.

  21. Komada, K. andMoon, S., Transient Needle Motion of an Outwardly Opening GDI Injector and Its Effects on Initial Spray Formation, Fuel, vol. 181, pp. 964–972, 2016.

  22. Mauger, C., Mees, L., Michard, M., and Lance, M., Shadowgraph, Schlieren and Interferometry in a 2D Cavitating Channel Flow, Exp. Fluids, vol. 53, no. 6, pp. 1895–1913, 2012.

  23. Moon, S., Gao, Y., Wang, J., Fezzaa, K., and Tsujimura, T., Near-Field Dynamics of High-Speed Diesel Sprays: Effects of Orifice Inlet Geometry and Injection Pressure, Fuel, vol. 133, pp. 299–309, 2014.

  24. Moon, S., Komada, K., Li, Z.,Wang, J., Kimijima, T., Arima, T., and Maeda, Y., High-Speed X-Ray Imaging of In-Nozzle Cavitation and Emerging Jet Flow of Multi-Hole GDI Injector under Practical Operating Conditions, in Proc. of ICLASS 2015, 13th Int. Conf. on Liquid Atomization and Spray Systems, Tainan, Taiwan, 2015a.

  25. Moon, S., Komada, K., Sato, K., Yokohata, H., Wada, Y., and Yasuda, N., Ultrafast X-Ray Study of Multi- Hole GDI Injector Sprays: Effects of Nozzle Hole Length and Number on Initial Spray Formation, Exp. Therm. Fluid Sci., vol. 68, pp. 68–81, 2015b.

  26. Moon, S., Zhang, X., Gao, J., Fezzaa, K., Durfresne, E., Wang, J., Xie, X., Wang, F., and Lai, M.-C., Morphological Exploration of Emerging Jet Flows from Multi-Hole Diesel Injectors at Different Needle Lifts, Atomization Sprays, vol. 25, no. 5, pp. 375–396, 2015c.

  27. Naseri, H., Trickett, K., Mitroglou, N., Karathanassis, I., Koukouvinis, P., Gavaises, M., Barbour, R., Diamond, D., Rogers, S., Santini, M., and Wang, J., Turbulence and Cavitation Suppression by Quaternary Ammonium Salt Additives, Sci. Rep., vol. 8, p. 7636, 2018.

  28. Nurick, W.H., Orifice Cavitation and Its Effect on SprayMixing, J. Fluids Eng., vol. 98, no. 4, p. 681, 1976.

  29. Orley, F., Trummler, T., Hickel, S., Mihatsch, M.S., Schmidt, S.J., and Adams, N.A., Large-Eddy Simulation of Cavitating Nozzle Flow and Primary Jet Break-Up, Phys. Fluids, vol. 27, no. 8, p. 086101, 2015.

  30. Osta, A.R., Lee, J., Sallam, K.A., and Fezzaa, K., Study of the Effects of the Injector Length/Diameter Ratio on the Surface Properties of Turbulent Liquid Jets in Still Air using X-Ray Imaging, Int. J. Multiphase Flow, vol. 38, no. 2012, pp. 87–98, 2011.

  31. Payri, F., Berm´udez, V., Payri, R., and Salvador, F.J., The Influence of Cavitation on the Internal Flow and the Spray Characteristics in Diesel Injection Nozzles, Fuel, vol. 83, nos. 4-5, pp. 419–431, 2004.

  32. Payri, F., Payri, R., Salvador, F.J., and Martınez-Lopez, J., A Contribution to the Understanding of Cavitation Effects in Diesel Injector Nozzles through a Combined Experimental and Computational Investigation, Comput. Fluids, vol. 58, pp. 88–101, 2012.

  33. Postrioti, L.,Mariani, F., Battistoni,M., andMariani, A., Experimental and Numerical Evaluation of Diesel Spray Momentum Flux, SAE Int. J. Engines, vol. 2, no. 2, pp. 287–299, 2009.

  34. Prasetya, R., Mashida, M., Yamada, Y., and Sou, A., Effect of Nozzle Inlet Roundness and Nozzle Length on Cavitation and Liquid Jet, in Proc. of ICLASS 2015, 13th Int. Conf. on Liquid Atomization and Spray Systems, Tainan, Taiwan, 2015.

  35. Prasetya, R., Miwa, T., Sou, A., Moon, S., Wada, Y., Ueki, Y., and Yokohata, H., X-Ray Imaging of Transient Cavitation Motion in Nozzles under Steady Injection Condition, in Proc. of the 10th Int. Symp. on Cavitation (CAV2018), Baltimore, MD, 2018.

  36. Pratama, R.H., Sou, A., Katsui, T., and Nishio, S., String Cavitation in a Fuel Injector, Atomization Sprays, vol. 27, no. 3, pp. 189–205, 2017.

  37. Riken, Bl40xu Outline, accessed September 27, 2018, from /instument/lang-en/INS-0000000353/instrument summary view], 2018.

  38. Soteriou, C., Andrews, R., and Smith, M., Direct Injection Diesel Sprays and the Effect of Cavitation and Hydraulic Flip on Atomization, SAE Tech. Paper no. 950080, 1995.

  39. Sou, A., Hosokawa, S., and Tomiyama, A., Effects of Cavitation in a Nozzle on Liquid Jet Atomization, Int. J. Heat Mass Transfer, vol. 50, nos. 17-18, pp. 3575–3582, 2007.

  40. Sou, A., Maulana, M., Hosokawa, S., and Tomiyama, A., Effects of Nozzle Geometry on Cavitation in Nozzles of Pressure Atomizers, J. Fluid Sci. Technol., vol. 3, no. 5, pp. 622–632, 2008.

  41. Sou, A., Hosokawa, S., and Tomiyama, A., Cavitation in Nozzles of Plain Orifice Atomizers with Various Length-to-Diameter Ratios, Atomization Sprays, vol. 20, no. 6, pp. 513–524, 2010.

  42. Sou, A., Minami, S., Prasetya, R., Pratama, R.H., Moon, S., Wada, Y., and Yoshitaka, H., X-Ray Visualization of Cavitation in Nozzles with Various Sizes, Proc. of ICLASS 2015, 13th Int. Conf. on Liquid Atomization and Spray Systems, Tainan, Taiwan, 2015.

  43. Vabre, A., Gmar, M., Lazaro, D., Legoupil, S., Coutier-Delgosha, O., Dazin, A., Lee,W.K., and Fezzaa, K., Synchrotron Ultra-Fast X-Ray Imaging of a Cavitating Flow in a Venturi Profile, Nucl. Instrum.Methods Phys. Res., Sect. A, vol. 607, no. 1, pp. 215–217, 2009.

  44. Yan, Y. and Thorpe, R.B., Flow Regime Transitions due to Cavitation in the Flow through an Orifice, Int. J. Multiphase Flow, vol. 16, no. 6, pp. 1023–1045, 1990.

Articles with similar content:

Atomization and Sprays, Vol.26, 2016, issue 9
Akira Sou, Raditya Hendra Pratama
Atomization and Sprays, Vol.29, 2019, issue 2
Akira Sou, Yoshitaka Wada, Hideaki Yokohata, Rubby Prasetya, Seoksu Moon, Raditya Hendra Pratama
Proceedings of the Sixth International Conference on Liquid Atomization and Spray Systems, Vol.0, 1994, issue
Siichi Shiga, Zhen Huang, Hisao Nakamura, Y.M. Shao, Takao Karasawa
Spray Break-Up Process of Diesel Fuel Investigated Close to the Nozzle
International Journal of Fluid Mechanics Research, Vol.24, 1997, issue 1-3
Alfred Leipertz, K.-U. Munch, A. Fath
Multiphase Science and Technology, Vol.31, 2019, issue 4
Vivek Gupta, R. S. Singh, Nirupama Patra, Pradyumna Ghosh