Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Atomization and Sprays
Fator do impacto: 1.737 FI de cinco anos: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 2.2

ISSN Imprimir: 1044-5110
ISSN On-line: 1936-2684

Volumes:
Volume 30, 2020 Volume 29, 2019 Volume 28, 2018 Volume 27, 2017 Volume 26, 2016 Volume 25, 2015 Volume 24, 2014 Volume 23, 2013 Volume 22, 2012 Volume 21, 2011 Volume 20, 2010 Volume 19, 2009 Volume 18, 2008 Volume 17, 2007 Volume 16, 2006 Volume 15, 2005 Volume 14, 2004 Volume 13, 2003 Volume 12, 2002 Volume 11, 2001 Volume 10, 2000 Volume 9, 1999 Volume 8, 1998 Volume 7, 1997 Volume 6, 1996 Volume 5, 1995 Volume 4, 1994 Volume 3, 1993 Volume 2, 1992 Volume 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2018020689
pages 1041-1061

NONLINEAR SPATIAL INSTABILITY OF A SLENDER VISCOUS JET

Li-Jun Yang
School of Astronautics, Beijing University of Aeronautics and Astronautics, Beijing, China
Tao Hu
Beijing University of Aeronautics and Astronautics, Beijing, 100191, China
Pi-Min Chen
AVIC Aviation Powerplant Research Institute, Zhuzhou, 412002, China
Han-Yu Ye
Beijing University of Aeronautics and Astronautics, Beijing, 100191, China

RESUMO

A perturbation analysis combined with one-dimensional equations is carried out to study the nonlinear spatial instability of a slender viscous jet. The solutions and wave profiles of the second order to third order have been presented. The result indicates that, as the perturbation expression proceeds to higher orders, the main swellings become narrow and the secondary swellings are flattened, resulting in the formation of a level liquid ligament. In addition, there exist two different nonlinear regions, named herein as the strong nonlinear region and the weak nonlinear region. The division of the two regions can be explained as a result of the interactions between the higher order harmonics transferred from lower orders and the inherent higher order disturbances. In addition, as Weber number decreases or Reynolds number increases, the growth rate of the jet increases significantly; the nonlinear amplitudes increase in the strong nonlinear region but remain constant in the weak nonlinear region, resulting in a shorter breakup length and a nearly identical waveform. The critical frequency, below which the jet is in the strong nonlinear region and above which it is in the weak nonlinear region, is not affected by Weber number but decreases noticeably as the Reynolds number reduces to less than 10. The theoretical waveforms are in agreement with previous experiments and simulations.


Articles with similar content:

INFLUENCES OF BOUNDED AND COMPRESSIBLE GAS MEDIUM ON THE INSTABILITY OF AN ANNULAR POWER-LAW LIQUID JET
Atomization and Sprays, Vol.28, 2018, issue 5
Qing Du, Fu-Qiang Bai, Yi-bo Wang, Jin-Peng Guo
THREE-DIMENSIONAL INSTABILITY OF VISCOUS LIQUID SHEETS
Atomization and Sprays, Vol.6, 1996, issue 6
E. A. Ibrahim, E. T. Akpan
A Nonlinear Model for the Atomization of Attenuating Liquid Sheets
International Journal of Fluid Mechanics Research, Vol.34, 2007, issue 3
D. Sree, T. R. McKinney, E. A. Ibrahim
THREE-DIMENSIONAL TEMPORAL INSTABILITY OF NON-NEWTONIAN LIQUID SHEETS
Atomization and Sprays, Vol.11, 2001, issue 1
Günter Brenn, Zhengbai Liu, Franz Durst
TWO-DIMENSIONAL TEMPORAL INSTABILITY OF A VISCOELASTIC LIQUID SHEET OF A PARABOLIC VELOCITY PROFILE
Atomization and Sprays, Vol.27, 2017, issue 5
Zi-yue Wang, Zhi-ying Chen, Lian-sheng Liu, Run-ze Duan